ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Окружности
>>
Касательные прямые и касающиеся окружности
>>
Прямые, касающиеся окружностей
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Дан треугольник со сторонами 10, 24 и 26. Две меньшие стороны являются касательными к окружности, центр которой лежит на большей стороне. |
Страница: << 110 111 112 113 114 115 116 >> [Всего задач: 769]
Около окружности радиуса R описана трапеция. Хорда, соединяющая точки касания окружности с боковыми сторонами трапеции, равна a. Хорда параллельна основанию трапеции. Найдите площадь трапеции.
Радиус OM окружности с центром в точке O и хорда KQ
пересекаются в точке A. Отрезки OM и OA равны соответственно r и a, ∠KAM = α < 90°.
Дан треугольник со сторонами 10, 24 и 26. Две меньшие стороны являются касательными к окружности, центр которой лежит на большей стороне.
На окружности радиуса 12 с центром в точке O лежат точки A и B. Прямые AC и BC касаются этой окружности. Другая окружность с центром в точке M вписана в треугольник ABC и касается стороны AC в точке K, а стороны BC – в точке H. Расстояние от точки M до прямой KH равно 3. Найдите ∠AOB.
Около окружности описана равнобедренная трапеция ABCD. Боковая сторона AB касается окружности в точке M, а основание AD – в точке N. Отрезки MN и AC пересекаются в точке P, причём NP : PM = 2. Найдите отношение AD : BC.
Страница: << 110 111 112 113 114 115 116 >> [Всего задач: 769] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|