ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Докажите, что высоты остроугольного треугольника являются биссектрисами углов его ортотреугольника (т.е. треугольника с вершинами в основаниях высот данного). Решение |
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 74]
Из середины каждой стороны остроугольного треугольника опущены перпендикуляры на две другие стороны. Докажите, что площадь ограниченного этими перпендикулярами шестиугольника равна половине площади треугольника.
Дан треугольник АВС. Точка О1 – центр прямоугольника ВСDE, построенного так, что сторона DE прямоугольника содержит вершину А треугольника. Точки О2 и О3 являются центрами прямоугольников, построенных аналогичным образом на сторонах АС и АВ соответственно. Докажите, что прямые АО1, ВО2 и СО3 пересекаются в одной точке.
Докажите, что высоты остроугольного треугольника являются биссектрисами углов его ортотреугольника (т.е. треугольника с вершинами в основаниях высот данного).
Пусть H — точка пересечения высот треугольника ABC. Докажите, что треугольник с вершинами в центрах описанных окружностей треугольников BHC, AHC и AHB равен треугольнику ABC.
В остроугольном треугольнике ABC проведены высоты AE и CD. Различные точки F и G на стороне AC таковы, что DF || BC и EG || AB. Докажите, что точки D, E, F и G лежат на одной окружности.
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 74] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|