Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Автор: Храмцов Д.

Дано натуральное число  n ≥ 2.  Рассмотрим все такие покраски клеток доски n×n в k цветов, что каждая клетка покрашена ровно в один цвет и все k цветов встречаются. При каком наименьшем k в любой такой покраске найдутся четыре окрашенных в четыре разных цвета клетки, расположенные в пересечении двух строк и двух столбцов?

Вниз   Решение


Бумажный квадрат был проколот в 1965 точках. Из точек-проколов и вершин квадрата никакие три не лежат на одной прямой. Потом сделали несколько прямолинейных не пересекающихся между собой разрезов, каждый из которых начинался и кончался только в проколотых точках или вершинах квадрата. Оказалось, что квадрат разрезан на треугольники, внутри которых проколов нет. Сколько было сделано разрезов и сколько получилось треугольников?

ВверхВниз   Решение


Даны 12 чисел, a1, a2,...a12, причём имеют место следующие неравенства:

a2(a1 - a2 + a3) < 0
a3(a2 - a3 + a4) < 0
.........    
a11(a10 - a11 + a12) < 0

Доказать, что среди этих чисел найдётся по крайней мере 3 положительных и 3 отрицательных.

ВверхВниз   Решение


Окружности с центрами O1 и O2 имеют общую хорду AB, $ \angle$AO1B = 60o. Отношение длины первой окружности к длине второй равно $ \sqrt{2}$. Найдите угол AO2B.

ВверхВниз   Решение


Диагональ BD четырёхугольника ABCD является диаметром окружности, описанной около этого четырёхугольника. Найдите диагональ AC, если BD = 2, AB = 1, $ \angle$ABD : $ \angle$DBC = 4 : 3.

ВверхВниз   Решение


В треугольнике $ABC$ вписанная окружность $\omega$ касается сторон $BC$, $CA$, $AB$ в точках $A_1$, $B_1$ и $C_1$ соответственно, $P$ – произвольная точка этой окружности. Прямая $AP$ вторично пересекает описанную окружность треугольника $AB_1C_1$ в точке $A_2$. Аналогично строятся точки $B_2$ и $C_2$. Докажите, что описанная около треугольника $A_2B_2C_2$ окружность касается $\omega$.

ВверхВниз   Решение


В графе 100 вершин, причём степень каждой из них не меньше 50. Доказать, что граф связен.

ВверхВниз   Решение


Две окружности разных радиусов касаются в точке A одной и той же прямой и расположены по разные стороны от неё. Отрезок AB -- диаметр меньшей окружности. Из точки B проведены две прямые, касающиеся большей окружности в точках M и N. Прямая, проходящая через точки M и A, пересекают меньшую окружность в точке K. Известно, что MK = $ \sqrt{2 + \sqrt{3}}$, а угол BMA равен 15o. Найдите площадь фигуры, ограниченной отрезками касательной BM, BN и той дугой MN большей окружности, которая не содержит точку A.

Вверх   Решение

Задачи

Страница: << 37 38 39 40 41 42 43 >> [Всего задач: 1282]      



Задача 52933

Тема:   [ Вписанный угол равен половине центрального ]
Сложность: 4-
Классы: 8,9

Окружность с центром O проходит через вершины A и B треугольника ABC и пересекает сторону AC в точке M и сторону BC в точке N. Углы AOM и BON равны 60o. Расстояния от точки N до прямой AB равно 5$ \sqrt{3}$. Отрезок MN в четыре раза меньше отрезка AB. Найдите площадь треугольника ABC.

Прислать комментарий     Решение


Задача 53056

Темы:   [ Угол между касательной и хордой ]
[ Площади криволинейных фигур ]
[ Площадь круга, сектора и сегмента ]
Сложность: 4-
Классы: 8,9

Две окружности разных радиусов касаются в точке A одной и той же прямой и расположены по разные стороны от неё. Отрезок AB -- диаметр меньшей окружности. Из точки B проведены две прямые, касающиеся большей окружности в точках M и N. Прямая, проходящая через точки M и A, пересекают меньшую окружность в точке K. Известно, что MK = $ \sqrt{2 + \sqrt{3}}$, а угол BMA равен 15o. Найдите площадь фигуры, ограниченной отрезками касательной BM, BN и той дугой MN большей окружности, которая не содержит точку A.

Прислать комментарий     Решение


Задача 53097

Темы:   [ Вписанный угол равен половине центрального ]
[ Правильный (равносторонний) треугольник ]
Сложность: 4-
Классы: 8,9

На продолжении за точку A стороны AC правильного треугольника ABC взята точка M, и около треугольников ABM и MBC описаны окружности. Точка A делит дугу MAB в отношении MA : AB = n. В каком отношении точка C делит дугу MCB?

Прислать комментарий     Решение


Задача 53098

Темы:   [ Вписанный угол равен половине центрального ]
[ Правильный (равносторонний) треугольник ]
Сложность: 4-
Классы: 8,9

На стороне AC правильного треугольника ABC взята точка M, и около треугольников ABM и MBC описаны окружности. Точка C делит дугу MCB в отношении $ \cup$ MC : $ \cup$ CB = n. В каком отношении точка A делит дугу MAB?

Прислать комментарий     Решение


Задача 53723

Темы:   [ Вписанный угол равен половине центрального ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 4-
Классы: 8,9

Рассмотрим четыре сегмента, отсекаемых от окружности вписанным в неё четырёхугольником и расположенных вне этого четырёхугольника. Найдите сумму углов, вписанных в эти сегменты.

Прислать комментарий     Решение


Страница: << 37 38 39 40 41 42 43 >> [Всего задач: 1282]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .