ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Дано натуральное число n ≥ 2. Рассмотрим все такие покраски клеток доски n×n в k цветов, что каждая клетка покрашена ровно в один цвет и все k цветов встречаются. При каком наименьшем k в любой такой покраске найдутся четыре окрашенных в четыре разных цвета клетки, расположенные в пересечении двух строк и двух столбцов? Бумажный квадрат был проколот в 1965 точках. Из точек-проколов и вершин квадрата никакие три не лежат на одной прямой. Потом сделали несколько прямолинейных не пересекающихся между собой разрезов, каждый из которых начинался и кончался только в проколотых точках или вершинах квадрата. Оказалось, что квадрат разрезан на треугольники, внутри которых проколов нет. Сколько было сделано разрезов и сколько получилось треугольников? Даны 12 чисел, a1, a2,...a12, причём имеют место следующие неравенства:
Окружности с центрами O1 и O2 имеют общую хорду AB,
Диагональ BD четырёхугольника ABCD является диаметром
окружности, описанной около этого четырёхугольника. Найдите
диагональ AC, если BD = 2, AB = 1,
В треугольнике $ABC$ вписанная окружность $\omega$ касается сторон $BC$, $CA$, $AB$ в точках $A_1$, $B_1$ и $C_1$ соответственно, $P$ – произвольная точка этой окружности. Прямая $AP$ вторично пересекает описанную окружность треугольника $AB_1C_1$ в точке $A_2$. Аналогично строятся точки $B_2$ и $C_2$. Докажите, что описанная около треугольника $A_2B_2C_2$ окружность касается $\omega$. В графе 100 вершин, причём степень каждой из них не меньше 50. Доказать, что граф связен.
Две окружности разных радиусов касаются в точке A одной и
той же прямой и расположены по разные стороны от неё. Отрезок AB
-- диаметр меньшей окружности. Из точки B проведены две прямые,
касающиеся большей окружности в точках M и N. Прямая, проходящая
через точки M и A, пересекают меньшую окружность в точке K.
Известно, что
MK =
|
Страница: << 37 38 39 40 41 42 43 >> [Всего задач: 1282]
Окружность с центром O проходит через вершины A и B
треугольника ABC и пересекает сторону AC в точке M и сторону BC в
точке N. Углы AOM и BON равны
60o. Расстояния от точки
N до прямой AB равно 5
Две окружности разных радиусов касаются в точке A одной и
той же прямой и расположены по разные стороны от неё. Отрезок AB
-- диаметр меньшей окружности. Из точки B проведены две прямые,
касающиеся большей окружности в точках M и N. Прямая, проходящая
через точки M и A, пересекают меньшую окружность в точке K.
Известно, что
MK =
На продолжении за точку A стороны AC правильного треугольника ABC взята точка M, и около треугольников ABM и MBC описаны окружности. Точка A делит дугу MAB в отношении MA : AB = n. В каком отношении точка C делит дугу MCB?
На стороне AC правильного треугольника ABC взята точка M, и
около треугольников ABM и MBC описаны окружности. Точка C делит
дугу MCB в отношении
Рассмотрим четыре сегмента, отсекаемых от окружности вписанным в неё четырёхугольником и расположенных вне этого четырёхугольника. Найдите сумму углов, вписанных в эти сегменты.
Страница: << 37 38 39 40 41 42 43 >> [Всего задач: 1282]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке