ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Две равные окружности пересекаются в точке C. Через точку C проведены две прямые, пересекающие данные окружности в точках A, B и M, N соответственно. Прямая AB параллельна линии центров, а прямая MN образует угол α с линией центров. Известно, что AB = a. Найдите NM. Решение |
Страница: << 34 35 36 37 38 39 40 >> [Всего задач: 401]
Сторона AB правильного шестиугольника ABCDEF равна и является хордой некоторой окружности, причём остальные стороны шестиугольника лежат вне этой окружности. Длина касательной CM, проведённой к той же окружности из вершины C, равна 3. Найдите диаметр окружности.
Окружность с центром в вершине прямого угла прямоугольного треугольника радиуса, равного меньшему катету, делит гипотенузу на отрезки в 98 и 527 (начиная от меньшего катета). Найдите катеты.
В равнобедренной трапеции с острым углом α при основании окружность, построенная на боковой стороне как на диаметре, касается другой боковой стороны.
Две равные окружности пересекаются в точке C. Через точку C проведены две прямые, пересекающие данные окружности в точках A, B и M, N соответственно. Прямая AB параллельна линии центров, а прямая MN образует угол α с линией центров. Известно, что AB = a. Найдите NM.
Окружность с центром O касается в точке A внутренним образом большей окружности. Из B точки большей окружности, диаметрально противоположной точке A, проведена хорда BC большей окружности, касающаяся меньшей окружности в точке M. Докажите, что OM || AC.
Страница: << 34 35 36 37 38 39 40 >> [Всего задач: 401] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|