|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Двое по очереди кладут пятаки на круглый стол, причем так, чтобы они не накладывались друг на друга. Проигрывает тот, кто не может сделать ход. Можно ли из 13 кирпичей 1×1×2 сложить куб 3×3×3 с дыркой 1×1×1 в центре?
ABC – равнобедренный треугольник с основанием AC, CD – биссектриса угла C, ∠ADC = 150°. Найдите ∠B.
В окружности радиуса R = 4 проведены хорда AB и диаметр AK,
образующий с хордой угол
|
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 175]
Из центра каждой из двух данных окружностей проведены касательные к другой окружности.
Прямая касается окружности в точке A. На прямой выбрали точку B и повернули отрезок AB на некоторый угол вокруг центра окружности, получив отрезок A'B'. Докажите, что прямая, проходящая через точки касания A и A', делит пополам отрезок BB'.
Пусть O – центр описанной окружности остроугольного треугольника ABC, SA, SB, SC – окружности с центром O, касающиеся сторон BC, CA и AB соответственно. Докажите, что сумма трёх углов: между касательными к SA, проведёнными из точки A, к SB – из точки B, и к SC – из точки C, равна 180°.
Прямые PA и PB касаются окружности с центром O (A и B — точки касания). Проведена третья касательная к окружности, пересекающая прямые PA и PB в точках X и Y. Докажите, что величина угла XOY не зависит от выбора третьей касательной.
В окружности радиуса R = 4 проведены хорда AB и диаметр AK,
образующий с хордой угол
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 175] |
|||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|