ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи
С числом разрешается производить две
операции: ``увеличить в два раза'' и ``увеличить на
1''. За какое наименьшее число операций можно из числа 0
получить
Дан треугольник ABC, в котором AC = На доске были записаны числа 3, 9 и 15. Разрешалось сложить два записанных числа, вычесть из этой суммы третье, а результат записать на доску вместо того числа, которое вычиталось. После многократного выполнения такой операции на доске оказались три числа, наименьшее из которых было 2013. Каковы были два остальных числа? В окружность вписан неправильный многоугольник. Если вершина A разбивает дугу, заключенную между двумя другими вершинами, на две неравные части, то такая вершина A называется неустойчивой. Каждую секунду какая-нибудь неустойчивая вершина перепрыгивает в середину своей дуги. В результате каждую секунду образуется новый многоугольник. Докажите, что сколько бы секунд ни прошло, многоугольник никогда не будет равным исходному. В треугольник ABC помещены три равных окружности, каждая из которых касается двух сторон треугольника. Все три окружности имеют одну общую точку. Найдите радиусы этих окружностей, если радиусы вписанной и описанной окружностей треугольника ABC равны r и R. Точка D – центр описанной окружности остроугольного треугольника ABC. Окружность, проходящая через точки A, B и D, пересекает стороны AC и BC в точках M и N соответственно. Докажите, что описанные окружности треугольников ABD и MNC равны. В треугольнике ABC проведены высоты AH1, BH2 и CH3. Точка M – середина отрезка H2H3. Прямая AM пересекает отрезок H2H1 в точке K. В треугольнике ABC ∠CAB = 75°, ∠ABC = 45°. На стороне CA берётся точка K, а на стороне CB – точка M, CK : AK = 3 : 1. В остроугольном треугольнике ABC проведены
высоты AA1 и CC1. Точки A2 и C2 симметричны A1 и C1
относительно середин сторон BC и AB. Докажите, что прямая,
соединяющая вершину B с центром O описанной окружности, делит
отрезок A2C2 пополам.
Остроугольный равнобедренный треугольник и трапеция вписаны в окружность. Одно основание трапеции является диаметром окружности, а боковые стороны параллельны боковым сторонам треугольника. Найдите отношение площадей трапеции и треугольника. В треугольнике АВС точки М и N – середины сторон AC и ВС соответственно. Известно, что точка пересечения медиан треугольника AMN является точкой пересечения высот треугольника АВС. Найдите угол АВС. Высоты равнобедренного остроугольного треугольника, в котором AB = BC, пересекаются в точке H. На каждой стороне правильного треугольника взято по точке. Стороны треугольника с вершинами в этих точках перпендикулярны сторонам исходного треугольника. В каком отношении каждая из взятых точек делит сторону исходного треугольника? Докажите, что расстояние от вершины треугольника до точки пересечения высот вдвое больше, чем расстояние от центра описанной окружности до противоположной стороны. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 243]
Докажите, что расстояние от вершины треугольника до точки пересечения высот вдвое больше, чем расстояние от центра описанной окружности до противоположной стороны.
Высоты равнобедренного остроугольного треугольника, в котором AB = BC, пересекаются в точке H.
Точки a1, a2 и a3 расположены на единичной окружности zz = 1.
Высоты AD и BE остроугольного треугольника ABC пересекаются в точке H. Описанная окружность треугольника ABH, пересекает стороны AC и BC в точках F и G соответственно. Найдите FG, если DE = 5 см.
Точка H – ортоцентр треугольника ABC. Касательные, проведённые к описанным окружностям треугольников CHB и AHB в точке H, пересекают прямую AC в точках A1 и C1 соответственно. Докажите, что A1H = C1H.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 243]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке