ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Два угла треугольника равны 40° и 80°. Найдите углы треугольника с вершинами в точках касания вписанной окружности со сторонами данного треугольника.

   Решение

Задачи

Страница: << 54 55 56 57 58 59 60 >> [Всего задач: 769]      



Задача 52899

Темы:   [ Две касательные, проведенные из одной точки ]
[ Признаки и свойства касательной ]
[ Вспомогательные подобные треугольники ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3
Классы: 8,9

Из одной точки проведены к кругу две касательные. Длина касательной равна 156, а расстояние между точками касания равно 120. Найдите радиус круга.

Прислать комментарий     Решение

Задача 52904

Темы:   [ Подобные треугольники (прочее) ]
[ Две касательные, проведенные из одной точки ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3
Классы: 8,9

AB и AC – касательные к окружности с центром O, M – точка пересечения прямой AO с окружностью; DE – отрезок касательной, проведённой через точку M, между AB и AC. Найдите DE, если радиус окружности равен 15, а  AO = 39.

Прислать комментарий     Решение

Задача 53238

Темы:   [ Трапеции ]
[ Две касательные, проведенные из одной точки ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3
Классы: 8,9

В прямоугольной трапеции меньшее основание равно высоте, а большее основание равно a. Найдите боковые стороны трапеции, если известно, что одна из них касается окружности, проходящей через концы меньшего основания и касающейся большего основания.

Прислать комментарий     Решение

Задача 53695

Темы:   [ Вписанные и описанные окружности ]
[ Две касательные, проведенные из одной точки ]
Сложность: 3
Классы: 8,9

Два угла треугольника равны 40° и 80°. Найдите углы треугольника с вершинами в точках касания вписанной окружности со сторонами данного треугольника.

Прислать комментарий     Решение

Задача 53989

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Две касательные, проведенные из одной точки ]
Сложность: 3
Классы: 8,9

CH – высота прямоугольного треугольника ABC , проведённая из вершины прямого угла. Докажите, что сумма радиусов окружностей, вписанных в треугольники ACH , BCH и ABC , равна CH .
Прислать комментарий     Решение


Страница: << 54 55 56 57 58 59 60 >> [Всего задач: 769]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .