Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Высота трапеции ABCD равна 7, основания AD и BC равны соответственно 8 и 6. Через точку E, лежащую на стороне CD, проведена прямая BE, которая делит диагональ AC в точке O в отношении  AO : OC = 3 : 2.  Найдите площадь треугольника OEC.

Вниз   Решение


Докажите, что для чисел Люка Ln (см. задачу 60585) выполнено соотношение  

ВверхВниз   Решение


Бумажный прямоугольный треугольник перегнули по прямой так, что вершина прямого угла совместилась с другой вершиной.
  а) В каком отношении делятся диагонали полученного четырёхугольника их точкой пересечения?
  б) Полученный четырёхугольник разрезали по диагонали, выходящей из третьей вершины исходного треугольника. Найти площадь наименьшего образовавшегося куска бумаги.

ВверхВниз   Решение


Дан треугольник ABC. Найдите внутри его точку O, для которой сумма длин отрезков OA, OB, OC минимальна. (Обратите внимание на тот случай, когда один из углов треугольника больше 120o.)

ВверхВниз   Решение


Круг разделен на 6 секторов и в них по часовой стрелке расставлены числа: 1, 0, 1, 0, 0, 0. Разрешается прибавить по единице к числам в любых двух соседних секторах. Можно ли такими операциями добиться того, чтобы все числа в секторах были одинаковыми?

ВверхВниз   Решение


В основании треугольной пирамиды NKLM лежит правильный треугольник KLM . Высота пирамиды, опущенная из вершины N , проходит через середину ребра LM . Известно, что KL = a , KN = b . Пирамиду пересекает плоскость β , параллельная рёбрам KN и LM . На каком расстоянии от вершины N должна находиться плоскость β , чтобы площадь сечения пирамиды этой плоскостью была наибольшей?

ВверхВниз   Решение


Бумажная прямоугольная полоска помещается внутри данного круга. Полоску согнули (не обязательно пополам). Докажите, что после сгибания полоску можно также разместить в этом круге.

ВверхВниз   Решение


Почтальон Печкин не хотел отдавать посылку. Тогда Матроскин предложил ему сыграть в следующую игру: каждым ходом Печкин пишет в строку слева направо буквы, произвольно чередуя М и П, пока в строке не будет всего 11 букв. Матроскин после каждого его хода, если хочет, меняет местами любые две буквы. Если в итоге окажется, что записанное слово является палиндромом (то есть одинаково читается слева направо и справо налево), то Печкин отдаёт посылку. Сможет ли Матроскин играть так, чтобы обязательно получить посылку?

ВверхВниз   Решение


Трапеция AEFG  (EF || AG)  расположена в квадрате ABCD со стороной 14 так, что точки E, F и G лежат на сторонах AB, BC и CD соответственно. Диагонали AF и EG перпендикулярны,  EG = 10.  Найдите периметр трапеции.

Вверх   Решение

Задачи

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 122]      



Задача 52468

 [Теорема Птолемея]
Темы:   [ Теорема Птолемея ]
[ Две пары подобных треугольников ]
[ Вспомогательные равные треугольники ]
[ Площадь четырехугольника ]
[ Площадь треугольника (через две стороны и угол между ними) ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 4-
Классы: 8,9

Докажите, что если четырёхугольник вписан в окружность, то сумма произведений длин двух пар его противоположных сторон равна произведению длин его диагоналей.

Прислать комментарий     Решение

Задача 53251

Темы:   [ Теорема синусов ]
[ Две пары подобных треугольников ]
[ Площадь четырехугольника ]
Сложность: 4-
Классы: 8,9

Точки K, L, M делят стороны выпуклого четырёхугольника ABCD в отношении  AK : KB = CL : LB = CM : MD = 1 : 2.  Радиус описанной окружности треугольника KLM равен 5/2,  KL = 4,  LM = 3.  Какова площадь четырёхугольника ABCD, если известно, что  KM < KL?

Прислать комментарий     Решение

Задача 53252

Темы:   [ Теорема синусов ]
[ Две пары подобных треугольников ]
[ Площадь четырехугольника ]
Сложность: 4-
Классы: 8,9

Точки A, B, C делят стороны выпуклого четырёхугольника KLMN в отношении  AK : AL = BM : BL = CM : CN = 1 : 2.  Площадь четырёхугольника KLMN
равна 9AB = BC = 2.  Каков радиус описанной окружности треугольника ABC, если известно, что  AC > AB?

Прислать комментарий     Решение

Задача 53807

Темы:   [ Вспомогательная окружность ]
[ Две пары подобных треугольников ]
[ Теорема Пифагора (прямая и обратная) ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4-
Классы: 8,9

Трапеция AEFG  (EF || AG)  расположена в квадрате ABCD со стороной 14 так, что точки E, F и G лежат на сторонах AB, BC и CD соответственно. Диагонали AF и EG перпендикулярны,  EG = 10.  Найдите периметр трапеции.

Прислать комментарий     Решение

Задача 53808

Темы:   [ Вспомогательная окружность ]
[ Две пары подобных треугольников ]
[ Теорема Пифагора (прямая и обратная) ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4-
Классы: 8,9

Трапеция AEFG  (EF || AG)  расположена в квадрате ABCD со стороной 3 так, что точки E, F и G лежат на сторонах AB, BC и CD соответственно. Диагонали AF и EG трапеции перпендикулярны,  BF = 1.  Найдите периметр трапеции.

Прислать комментарий     Решение

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 122]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .