ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Сторона AB параллелограмма ABCD равна 2,  ∠A = 45°.  Точки E и F расположены на диагонали BD, причём  ∠AEB = ∠CFD = 90°,  BF = 3/2 BE.
Найдите площадь параллелограмма.

   Решение

Задачи

Страница: << 46 47 48 49 50 51 52 >> [Всего задач: 1354]      



Задача 53550

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4-
Классы: 8,9

В равнобедренном треугольнике ABC с основанием AC проведена биссектриса CD. Прямая, проходящая через точку D перпендикулярно DC, пересекает AC в точке E. Докажите, что  EC = 2AD.

Прислать комментарий     Решение

Задача 53619

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4-
Классы: 8,9

В равнобедренном треугольнике ABC с основанием AB проведена биссектриса BD. На прямой AB взята точка E так, что  ∠EDB = 90°.
Найдите BE, если AD = 1.

Прислать комментарий     Решение

Задача 53697

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Хорды и секущие (прочее) ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 4-
Классы: 8,9

Два квадрата ABCD и KLMN расположены так, что вершины B, C, K и N лежат на одной прямой, а четыре оставшиеся расположены по разные стороны от BC и лежат на одной окружности. Известно, что сторона одного из квадратов на 1 больше стороны другого. Найдите расстояние от центра окружности до прямой BC.

Прислать комментарий     Решение

Задача 53732

Темы:   [ Средние пропорциональные в прямоугольном треугольнике ]
[ Признаки подобия ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4-
Классы: 8,9

В остроугольном треугольнике ABC на высоте AD взята точка M, а на высоте BP – точка N так, что углы BMC и ANC – прямые. Расстояние между точками M и N равно  4 + 2,  угол MCN равен 30°. Найдите биссектрису CL треугольника CMN.

Прислать комментарий     Решение

Задача 53809

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Признаки и свойства параллелограмма ]
[ Треугольник, образованный основаниями двух высот и вершиной ]
[ Тождественные преобразования ]
Сложность: 4-
Классы: 8,9

Сторона AB параллелограмма ABCD равна 2,  ∠A = 45°.  Точки E и F расположены на диагонали BD, причём  ∠AEB = ∠CFD = 90°,  BF = 3/2 BE.
Найдите площадь параллелограмма.

Прислать комментарий     Решение

Страница: << 46 47 48 49 50 51 52 >> [Всего задач: 1354]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .