Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

С числом разрешается производить две операции: ``увеличить в два раза'' и ``увеличить на 1''. За какое наименьшее число операций можно из числа 0 получить
а) число 100; б) число n?

Вниз   Решение


Дан треугольник ABC, в котором  AC = BC = 1,  ∠B = 45°.  Найдите угол A.

ВверхВниз   Решение


На доске были записаны числа 3, 9 и 15. Разрешалось сложить два записанных числа, вычесть из этой суммы третье, а результат записать на доску вместо того числа, которое вычиталось. После многократного выполнения такой операции на доске оказались три числа, наименьшее из которых было 2013. Каковы были два остальных числа?

ВверхВниз   Решение


В окружность вписан неправильный многоугольник. Если вершина A разбивает дугу, заключенную между двумя другими вершинами, на две неравные части, то такая вершина A называется неустойчивой. Каждую секунду какая-нибудь неустойчивая вершина перепрыгивает в середину своей дуги. В результате каждую секунду образуется новый многоугольник. Докажите, что сколько бы секунд ни прошло, многоугольник никогда не будет равным исходному.

ВверхВниз   Решение


В треугольник ABC помещены три равных окружности, каждая из которых касается двух сторон треугольника. Все три окружности имеют одну общую точку. Найдите радиусы этих окружностей, если радиусы вписанной и описанной окружностей треугольника ABC равны r и R.

ВверхВниз   Решение


Автор: Чиник В.И.

Точка D – центр описанной окружности остроугольного треугольника ABC. Окружность, проходящая через точки A, B и D, пересекает стороны AC и BC в точках M и N соответственно. Докажите, что описанные окружности треугольников ABD и MNC равны.

ВверхВниз   Решение


В треугольнике ABC проведены высоты AH1, BH2 и CH3. Точка M – середина отрезка H2H3. Прямая AM пересекает отрезок H2H1 в точке K.
Докажите, что точка K принадлежит средней линии треугольника ABC, параллельной AC.

ВверхВниз   Решение


В треугольнике ABC  ∠CAB = 75°,  ∠ABC = 45°.  На стороне CA берётся точка K, а на стороне CB – точка M,  CK : AK = 3 : 1.
Найдите   KM : AB,  если это отношение меньше ¾, а прямая MK отсекает от треугольника ABC треугольник, ему подобный.

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 531]      



Задача 53021

Темы:   [ Теорема синусов ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3+
Классы: 8,9

В прямоугольный треугольник ABC вписан квадрат так, что две его вершины лежат на гипотенузе AB, а две другие — на катетах. Радиус круга, описанного около треугольника ABC, относится к стороне квадрата как 13:6. Найдите углы треугольника.

Прислать комментарий     Решение


Задача 53139

Темы:   [ Теорема синусов ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанный угол равен половине центрального ]
Сложность: 3+
Классы: 8,9

Автор: Чиник В.И.

Точка D – центр описанной окружности остроугольного треугольника ABC. Окружность, проходящая через точки A, B и D, пересекает стороны AC и BC в точках M и N соответственно. Докажите, что описанные окружности треугольников ABD и MNC равны.

Прислать комментарий     Решение

Задача 53265

Темы:   [ Теорема синусов ]
[ Вписанный угол равен половине центрального ]
Сложность: 3+
Классы: 8,9

Диаметр AB окружности продолжили за точку B и на продолжении отметили точку C. Из точки C провели секущую под углом к AC в 7o, пересекающую окружность в точках D и E, считая от точки C. Известно, что DC = 3, а угол DAC равен 30o. Найдите диаметр окружности.

Прислать комментарий     Решение


Задача 53266

Темы:   [ Теорема синусов ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3+
Классы: 8,9

В окружности диаметра 4 проведены диаметр AB и хорда CD, пересекающиеся в точке E. Известно, что углы ABC и BCE равны соответственно 60o и 8o. Найдите CE.

Прислать комментарий     Решение


Задача 53846

Темы:   [ Теорема синусов ]
[ Подобные треугольники (прочее) ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC  ∠CAB = 75°,  ∠ABC = 45°.  На стороне CA берётся точка K, а на стороне CB – точка M,  CK : AK = 3 : 1.
Найдите   KM : AB,  если это отношение меньше ¾, а прямая MK отсекает от треугольника ABC треугольник, ему подобный.

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 531]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .