Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 14 задач
Версия для печати
Убрать все задачи

Про многочлен   f(x) = x10 + a9x9 + ... + a0  известно, что   f(1) = f(–1),  ...,   f(5) = f(–5).  Докажите, что   f(x) = f(– x)  для любого действительного x.

Вниз   Решение


Докажите, что если в выпуклом пятиугольнике ABCDE  ABC = ∠ADE  и ∠AEC = ∠ADB,  то  ∠BAC = ∠DAE.

ВверхВниз   Решение


Известно, что разность между наибольшим и наименьшим из чисел x1, x2, x3, ..., x9, x10 равна 1. Какой  а) наибольшей;  б) наименьшей может быть разность между наибольшим и наименьшим из 10 чисел x1,  ½ (x1 + x2),  ⅓ (x1 + x2 + x3),  ...,  1/10 (x1 + x2 + ... + x10)?
в) Каков будет ответ, если чисел не 10, а n?

ВверхВниз   Решение


Один путник шел первые полпути со скоростью 4 км/ч, а вторые полпути со скоростью 6 км/ч. Другой путник шел первую половину времени со скоростью со скоростью 4км/ч, а вторую половину времени со скоростью 6 км/ч. С какой постоянной скоростью должен был бы идти каждый из них, чтобы затратить на свое путешествие то же самое время?

ВверхВниз   Решение


В треугольнике ABC точка D лежит на стороне BC, а точка O — на отрезке AD. Известно, что точки C, D и O лежат на окружности, центр которой находится на стороне AC, AC = 2$ \sqrt{2}$AB, угол DAC в два раза больше угла BAD, а угол OCA в два раза меньше угла OCB. Найдите косинус угла ACB.

ВверхВниз   Решение


Сумма обратных величин трёх натуральных чисел равна 1. Каковы эти числа?

ВверхВниз   Решение


Автор: Жгун В.С.

Треугольник ABC вписан в окружность. Через точку A проведены хорды, пересекающие сторону BC в точках K и L и дугу BC в точках M и N.
Докажите, что если вокруг четырёхугольника KLNM можно описать окружность, то треугольник ABC равнобедренный.

ВверхВниз   Решение


В равнобедренную трапецию, периметр которой равен 8, а площадь 2, можно вписать окружность. Найдите расстояние от точки пересечения диагоналей трапеции до её меньшего основания.

ВверхВниз   Решение


Прямоугольник размером m×n замощен плитками, изображенными на рис. Докажите, что m и n делятся на 4.



ВверхВниз   Решение


Около треугольника APK описана окружность радиуса 1. Продолжение стороны AP за вершину P отсекает от касательной к окружности, проведённой через вершину K, отрезок BK, равный 7. Найдите площадь треугольника APK, если известно, что угол ABK равен arctg$ {\frac{2}{7}}$.

ВверхВниз   Решение


Докажите, что многочлен  x44 + x33 + x22 + x11 + 1  делится на   x4 + x3 + x2 + x + 1.

ВверхВниз   Решение


Во время стоянки между двумя рейсами матросу исполнилось 20 лет. По этому случаю в кают-компании собрались все шесть членов команды.
– Я вдвое старше юнги и на 6 лет старше машиниста, – сказал рулевой.
– А я на столько же старше юнги, на сколько моложе машиниста, – заметил боцман. – Кроме того, я на 4 года старше матроса.
– Средний возраст команды – 28 лет, – дал справку капитан.
Сколько лет капитану?

ВверхВниз   Решение


Докажите, что три неравенства     не могут быть все верны одновременно, если числа a1, a2, a3, b1, b2, b3 положительны.

ВверхВниз   Решение


Две окружности пересекаются в точках A и B; AM и AN – диаметры окружностей. Докажите, что точки M, N и B лежат на одной прямой.

Вверх   Решение

Задачи

Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 306]      



Задача 53910

Темы:   [ Пересекающиеся окружности ]
[ Три точки, лежащие на одной прямой ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3-
Классы: 8,9

Две окружности пересекаются в точках A и B; AM и AN – диаметры окружностей. Докажите, что точки M, N и B лежат на одной прямой.

Прислать комментарий     Решение

Задача 54059

Темы:   [ Параллельные прямые, свойства и признаки. Секущие ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3-
Классы: 8,9

Через вершину A остроугольного треугольника ABC проведена прямая, параллельная стороне BC, равной a, и пересекающая окружности, построенные на сторонах AB и AC как на диаметрах, в точках M и N, отличных от A. Найдите MN.

Прислать комментарий     Решение

Задача 32063

Темы:   [ ГМТ - окружность или дуга окружности ]
[ Диаметр, основные свойства ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3
Классы: 8,9

Через данную точку на плоскости проводятся всевозможные прямые, пересекающие данную окружность. Найти геометрическое место середин получившихся хорд.

Прислать комментарий     Решение


Задача 52877

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Диаметр, хорды и секущие ]
[ Вписанный угол, опирающийся на диаметр ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 3
Классы: 8,9

O – центр окружности, C – точка пересечения хорды AB и радиуса OD, перпендикулярного к ней,  OC = 9,  CD = 32.  Найдите длину хорды.

Прислать комментарий     Решение

Задача 52883

Темы:   [ Диаметр, хорды и секущие ]
[ Теорема Пифагора (прямая и обратная) ]
[ Вписанный угол, опирающийся на диаметр ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 3
Классы: 8,9

Расстояния от одного конца диаметра до концов параллельной ему хорды равны 13 и 84. Найдите радиус окружности.

Прислать комментарий     Решение

Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 306]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .