ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Подтемы:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Две прямые, проходящие через точку C, касаются окружности в точках A и B. Может ли прямая, проходящая через середины отрезков AC и BC, касаться этой окружности?

   Решение

Задачи

Страница: << 44 45 46 47 48 49 50 >> [Всего задач: 1435]      



Задача 54029

Темы:   [ Углы между биссектрисами ]
[ Вписанная, описанная и вневписанная окружности; их радиусы ]
Сложность: 3+
Классы: 8,9

Докажите, что каждая сторона треугольника видна из центра вписанной окружности под тупым углом.

Прислать комментарий     Решение


Задача 54134

Темы:   [ Средняя линия треугольника ]
[ Неравенство треугольника ]
Сложность: 3+
Классы: 8,9

Две прямые, проходящие через точку C, касаются окружности в точках A и B. Может ли прямая, проходящая через середины отрезков AC и BC, касаться этой окружности?

Прислать комментарий     Решение


Задача 54442

Темы:   [ Свойства медиан. Центр тяжести треугольника. ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC медианы AE и BD, проведённые к сторонам BC и AC, пересекаются под прямым уголом. Сторона BC равна a. Найдите другие стороны треугольника ABC, если AE2 + BD2 = d2.

Прислать комментарий     Решение


Задача 54475

Темы:   [ Свойства медиан. Центр тяжести треугольника. ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3+
Классы: 8,9

Найдите площадь треугольника ABC, если AC = 3, BC = 4, а медианы AK и BL взаимно перпендикулярны.

Прислать комментарий     Решение


Задача 54705

Темы:   [ Удвоение медианы ]
[ Теорема о сумме квадратов диагоналей ]
Сложность: 3+
Классы: 8,9

Стороны треугольника равны 11, 13 и 12. Найдите медиану, проведённую к большей стороне.

Прислать комментарий     Решение


Страница: << 44 45 46 47 48 49 50 >> [Всего задач: 1435]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .