ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В треугольнике АВС проведены высота ВН, медиана ВВ1 и средняя линия А1С1 (А1 лежит на стороне ВС, С1 – на стороне АВ). Прямые А1С1 и ВВ1 пересекаются в точке М, а прямые С1В1 и А1Н – в точке N. Докажите, что прямые MN и BH параллельны. Точка E лежит на стороне AC правильного треугольника ABC, K – середина отрезка AE. Прямая, проходящая через точку E перпендикулярно прямой AB, и прямая, проходящая через точку C перпендикулярно прямой BC, пересекаются в точке D. Найдите углы треугольника BKD. В ромбе ABCD ∠А = 120°. На сторонах BC и CD взяты точки M и N так, что ∠NAM = 30°. Две медианы треугольника равны. Докажите, что треугольник равнобедренный. Точка M лежит на стороне AC равностороннего треугольника ABC со стороной 3a, причём AM : MC = 1 : 2. Точки K и L, расположенные на сторонах соответственно AB и BC являются вершинами другого равностороннего треугольника MKL. Найдите его стороны.
Доказать, что если
uk = Докажите, что числа
uk можно представить в виде многочлена от cos x.
Некоторые из чисел a1, a2,...an равны +1, остальные равны -1. Доказать, что
Центр окружности радиуса 5, описанной около равнобедренной трапеции, лежит на большем основании, а меньшее основание равно 6. Найдите площадь трапеции. Окружность S1 проходит через центр окружности S2 и пересекает её в точках A и B . Хорда AC окружности S1 касается окружности S2 в точке A и делит первую окружность на дуги, градусные меры которых относятся как 5:7 . Найдите градусные меры дуг, на которые окружность S2 делится окружностью S1 . На катетах прямоугольного треугольника как на диаметрах построены окружности. Найдите их общую хорду, если катеты равны 3 и 4. Две окружности пересекаются в точках A и B. Через точку A проведены диаметры AC и AD этих окружностей. Длины сторон треугольника DEF равны 8, 10 и 14. Вписанная в этот треугольник окружность касается его сторон в точках A, B и C. Найдите площадь треугольника ABC. Докажите, что внутри остроугольного треугольника существует такая точка, что основания перпендикуляров, опущенных из неё на стороны, являются вершинами равностороннего треугольника.
Из вершины A острого угла ромба ABCD опущены перпендикуляры
AM и AN на продолжения сторон BC и CD. В четырёхугольник AMCN
вписана окружность радиуса 1. Найдите сторону ромба, если
Окружность проходит через середины гипотенузы AB и катета BC прямоугольного треугольника ABC и касается катета AC. В каком отношении точка касания делит катет AC.
|
Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 175]
На диагонали AC параллелограмма ABCD взята точка P так, что AP : PC = 3 : 5. Окружность с центром в точке P касается прямой BC и пересекает отрезок AD в точках K и L. Точка K лежит между точками A и L, AK = 9, KL = 3, LD = 12. Найдите периметр параллелограмма ABCD.
Точки K и L являются серединами боковых сторон AB и BC равнобедренного треугольника ABC. Точка M расположена на медиане AL так, что
Окружность проходит через середины гипотенузы AB и катета BC прямоугольного треугольника ABC и касается катета AC. В каком отношении точка касания делит катет AC.
Из вершины тупого угла ромба ABCD проведены высоты BM и BN.
В четырёхугольник BMDN вписана окружность радиуса 1. Найдите
сторону ромба, если
Из вершины A острого угла ромба ABCD опущены перпендикуляры
AM и AN на продолжения сторон BC и CD. В четырёхугольник AMCN
вписана окружность радиуса 1. Найдите сторону ромба, если
Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 175]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке