ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Найдите количество пятизначных чисел, в десятичной записи которых содержится хотя бы одна цифра 8.
Между двумя параллельными прямыми дана точка. С помощью циркуля и линейки постройте окружность, проходящую через эту точку и касающуюся данных прямых.
Окружность, построенная на основании AD трапеции ABCD как на диаметре, проходит через середины боковых сторон AB и CD трапеции и касается основания BC. Найдите углы трапеции.
Докажите, что все корни уравнения a(z – b)n = c(z – d )n, где a, b, c, d – заданные комплексные числа, расположены на одной окружности или прямой. Сумма шестых степеней шести целых чисел на единицу больше, чем их ушестерённое произведение. В остроугольном треугольнике MKN проведена биссектриса KL. Точка X на стороне MK такова, что KX = KN. Докажите, что прямые KO и XL перпендикулярны (O – центр описанной окружности треугольника MKN). Продолжения боковых сторон AB и CD трапеции ABCD пересекаются в точке S. Точки X, Y на биссектрисе угла S таковы, что ∠AXC−∠AYC=∠ASC. Докажите, что ∠BXD−∠BYD=∠BSD.
Две окружности касаются внутренним образом в точке A. Из
центра O большей окружности проведён радиус OB, касающийся
меньшей окружности в точке C. Найдите
Вершины M и N равнобедренного треугольника BMN (BM = BN) лежат соответственно на сторонах AD и CD квадрата ABCD. Докажите, что MN || AC.
Точки C и D лежат на окружности с диаметром AB и отличны от A и B. Прямые AC и BD пересекаются в точке P, а прямые AD и BC — в точке Q. Докажите, что AB перпендикулярно PQ.
Компания из нескольких друзей вела переписку так, что каждое письмо получали все, кроме отправителя. Каждый написал одно и то же количество писем, в результате чего всеми вместе было получено 440 писем. Сколько человек могло быть в этой компании? В призму ABCA'B'C' вписана сфера, касающаяся боковых граней BCC'B', CAA'C, ABB'A' в точках A0, B0, C0 соответственно. При этом На одной из медиан треугольника ABC нашлась такая точка P, что ∠PAB=∠PBC=∠PCA. Докажите, что на другой медиане найдется такая точка Q, что ∠QBA=∠QCB=∠QAC. Один из углов прямоугольной трапеции равен 120°, большее основание равно 12. |
Страница: << 47 48 49 50 51 52 53 >> [Всего задач: 604]
Вершины M и N равнобедренного треугольника BMN (BM = BN) лежат соответственно на сторонах AD и CD квадрата ABCD. Докажите, что MN || AC.
Высоты остроугольного треугольника ABC, проведённые из вершин B и C, равны 7 и 9, а медиана AM равна 8. Точки P и Q симметричны точке M относительно сторон AC и AB соответственно. Найдите периметр четырёхугольника APMQ.
Меньшая боковая сторона прямоугольной трапеции равна 3, а большая образует угол 30°, с одним из оснований.
Один из углов прямоугольной трапеции равен 120°, большее основание равно 12.
Биссектрисы тупых углов при основании трапеции пересекаются на другом её основании.
Страница: << 47 48 49 50 51 52 53 >> [Всего задач: 604]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке