ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Основания трапеции равны 1,8 и 1,2; боковые стороны, равные 1,5 и 1,2, продолжены до взаимного пересечения. Проверьте, что многочлены Чебышёва Tn(x) и Un(x) (см. задачу
61099)
удовлетворяют начальным условиям Известно, что число a положительно, а неравенство 1 < xa < 2 имеет ровно три решения в целых числах. Имеется несколько камней, масса каждого из которых не превосходит 2 кг, а общая масса равна 100 кг. Из них выбирается несколько камней, суммарная масса которых отличается от 10 кг на наименьшее возможное для данного набора число d. Какое максимальное значение может принимать число d для всевозможных наборов камней? Сумма положительных чисел x1, x2, ..., xn равна ½. Докажите, что Имеются 2013 карточек, на которых написана цифра 1, и 2013 карточек, на которых написана цифра 2. Вася складывает из этих карточек 4026-значное число. За один ход Петя может поменять местами некоторые две карточки и заплатить Васе 1 рубль. Процесс заканчивается, когда у Пети получается число, кратное 11. Какую наибольшую сумму может заработать Вася, если Петя стремится заплатить как можно меньше? Решите уравнение tanπx=[lgπx]−[lg[πx]], где [a] обозначает наибольшее целое число, не превосходящее a. Девять чисел таковы, что сумма каждых четырёх из них меньше суммы пяти остальных. Докажите, что все числа положительны. Дано 100 чисел a1, a2, a3, ..., a100, удовлетворяющих условиям:
В треугольнике ABC из вершины A проведена прямая,
пересекающая сторону BC в точке D, находящейся между точками B и
C, причём
Из одной точки проведены к данной прямой перпендикуляр и две наклонные. |
Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 5294]
Найдите периметр четырехугольника ABCD, в котором
AB = CD = a,
Основания трапеции равны 1,8 и 1,2; боковые стороны, равные 1,5 и 1,2, продолжены до взаимного пересечения.
Продолжения боковых сторон AB и CD трапеции ABCD пересекаются в точке E. Найдите стороны треугольника AED, если AB = 3, BC = 10, CD = 4, AD = 12.
Катеты прямоугольного треугольника относятся как 5:6, а гипотенуза равна 122. Найдите отрезки, на которые высота делит гипотенузу.
Из одной точки проведены к данной прямой перпендикуляр и две наклонные.
Страница: << 22 23 24 25 26 27 28 >> [Всего задач: 5294]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке