Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Докажите равенство:

arctg $\displaystyle {\textstyle\frac{1}{3}}$ + arctg $\displaystyle {\textstyle\frac{1}{5}}$ + arctg $\displaystyle {\textstyle\frac{1}{7}}$ + arctg $\displaystyle {\textstyle\frac{1}{8}}$ = $\displaystyle {\frac{\pi}{4}}$.


Вниз   Решение


Докажите равенство треугольников по стороне, медиане, проведённой к этой стороне, и углам, которые образует медиана с этой стороной.

ВверхВниз   Решение


Основание AC равнобедренного треугольника ABC является хордой окружности, центр которой лежит внутри треугольника ABC. Прямые, проходящие через точку B, касаются окружности в точках D и E. Найдите площадь треугольника DBE, если  AB = BC = 2,  ∠B = 2 arcsin ,  а радиус окружности равен 1.

ВверхВниз   Решение


Докажите, что число 10...050...01 (в каждой из двух групп по 100 нулей) не является кубом целого числа.

ВверхВниз   Решение


На листе бумаги отмечены точки A, B, C, D. Распознающее устройство может абсолютно точно выполнять два типа операций: а) измерять в сантиметрах расстояние между двумя заданными точками; б) сравнивать два заданных числа. Какое наименьшее число операций нужно выполнить этому устройству, чтобы наверняка определить, является ли четырёхугольник ABCD квадратом?

ВверхВниз   Решение


Известно, что уравнение  x4 + ax³ + 2x² + bx + 1 = 0  имеет действительный корень. Докажите неравенство  a² + b² ≥ 8.

ВверхВниз   Решение


Что больше:     или  

ВверхВниз   Решение


В четырёхугольнике ABCD вписанная окружность ω касается сторон BC и DA в точках E и F соответственно. Оказалось, что прямые AB, FE и CD пересекаются в одной точке S. Описанные окружности Ω и Ω1 треугольников AED и BFC, вторично пересекают окружность ω в точках E1 и F1. Докажите, что прямые EF и E1F1 параллельны.

ВверхВниз   Решение


В равнобедренном треугольнике с боковой стороной, равной b, проведены биссектрисы углов при основании. Отрезок прямой между точками пересечения биссектрис с боковыми сторонами равен m. Найдите основание треугольника.

Вверх   Решение

Задачи

Страница: << 48 49 50 51 52 53 54 >> [Всего задач: 604]      



Задача 54287

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 3+
Классы: 8,9

В трапеции большее основание равно 5, одна из боковых сторон равна 3. Известно, что одна из диагоналей перпендикулярна заданной боковой стороне, а другая делит угол между заданной боковой стороной и основанием пополам. Найдите площадь трапеции.

Прислать комментарий     Решение

Задача 54290

Темы:   [ Отношение, в котором биссектриса делит сторону ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

В равнобедренном треугольнике с боковой стороной, равной b, проведены биссектрисы углов при основании. Отрезок прямой между точками пересечения биссектрис с боковыми сторонами равен m. Найдите основание треугольника.

Прислать комментарий     Решение

Задача 54334

Темы:   [ Вневписанные окружности ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Теорема Пифагора (прямая и обратная) ]
[ Площадь трапеции ]
Сложность: 3+
Классы: 8,9

В трапеции ABCD основание BC равно 13, а угол BAD острый и вдвое больше угла ADC. Окружность с центром на прямой BC касается прямых AC, AD и отрезка CD. Найдите площадь трапеции ABCD, если известно, что радиус окружности равен 5.

Прислать комментарий     Решение

Задача 54378

Темы:   [ Признаки и свойства касательной ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Отношение площадей подобных треугольников ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3+
Классы: 8,9

Основание AC равнобедренного треугольника ABC является хордой окружности, центр которой лежит внутри треугольника ABC. Прямые, проходящие через точку B, касаются окружности в точках D и E. Найдите площадь треугольника DBE, если  AB = BC = 2,  ∠B = 2 arcsin ,  а радиус окружности равен 1.

Прислать комментарий     Решение

Задача 54379

Темы:   [ Признаки и свойства касательной ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Отношение площадей подобных треугольников ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3+
Классы: 8,9

Основание KM равнобедренного треугольника KLM является хордой окружности, центр которой лежит вне треугольника KLM. Прямые, проходящие через точку L, касаются окружности в точках P и Q. Найдите площадь треугольника PLQ, если  KL = LM = ,  ∠KLM = 2 arcsin ,  а радиус окружности
равен 1.

Прислать комментарий     Решение

Страница: << 48 49 50 51 52 53 54 >> [Всего задач: 604]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .