ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Пусть уравнение x³ + px + q = 0 имеет корни x1, x2 и x3. Выразите через p и q дискриминант этого уравнения D = (x1 – x2)²(x² – x3)²(x3 – x1)². Последовательность натуральных чисел a1, a2, ..., an, ... такова, что для каждого n уравнение an+2x² + an+1x + an = 0 имеет действительный корень. Может ли число членов этой последовательности быть Пусть E, F, G, H – середины сторон AB, BC, CD, DA выпуклого четырёхугольника ABCD. Докажите, что SABCD ≤ EG·HF.
Найдите наибольшее и наименьшее значения функций
В треугольнике ABC медианы AE и BD, проведённые к сторонам BC и AC, пересекаются под прямым уголом. Сторона BC равна a. Найдите другие стороны треугольника ABC, если AE2 + BD2 = d2.
|
Страница: << 44 45 46 47 48 49 50 >> [Всего задач: 1442]
Докажите, что каждая сторона треугольника видна из центра вписанной окружности под тупым углом.
Две прямые, проходящие через точку C, касаются окружности в точках A и B. Может ли прямая, проходящая через середины отрезков AC и BC, касаться этой окружности?
В треугольнике ABC медианы AE и BD, проведённые к сторонам BC и AC, пересекаются под прямым уголом. Сторона BC равна a. Найдите другие стороны треугольника ABC, если AE2 + BD2 = d2.
Найдите площадь треугольника ABC, если AC = 3, BC = 4, а медианы AK и BL взаимно перпендикулярны.
Стороны треугольника равны 11, 13 и 12. Найдите медиану, проведённую к большей стороне.
Страница: << 44 45 46 47 48 49 50 >> [Всего задач: 1442]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке