ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В прямоугольный равнобедренный треугольник ABC с прямым углом при вершине B вписан прямоугольник MNKB так, что две его стороны MB и KB лежат на катетах, а вершина N — на гипотенузе AC. В каком отношении точка N должна делить гипотенузу, чтобы площадь параллелограмма составляла 18% площади треугольника? Решение |
Страница: << 37 38 39 40 41 42 43 >> [Всего задач: 460]
В выпуклом четырёхугольнике ABCD известно, что площадь треугольника ODC (O – точка пересечения диагоналей) есть среднее пропорциональное между площадями треугольников BOC и AOD. Докажите, что ABCD – трапеция или параллелограмм.
Точка M, лежащая вне круга с диаметром AB, соединена с точками A и B. Отрезки MA и MB пересекают окружность в точках C и D соответственно. Площадь круга, вписанного в треугольник AMB, в четыре раза больше, чем площадь круга, вписанного в треугольник CMD. Найдите углы треугольника AMB, если известно, что один из них в два раза больше другого.
Точки A1, B1, C1 лежат соответственно на сторонах BC, AC, AB треугольника ABC, причём отрезки AA1, BB1, CC1 пересекаются в точке K.
В прямоугольный равнобедренный треугольник ABC с прямым углом при вершине B вписан прямоугольник MNKB так, что две его стороны MB и KB лежат на катетах, а вершина N — на гипотенузе AC. В каком отношении точка N должна делить гипотенузу, чтобы площадь параллелограмма составляла 18% площади треугольника?
В равнобедренном треугольнике ABC боковые стороны BC и AC в два раза больше основания AB. Биссектрисы углов при основании пересекаются в точке M. Какую часть треугольника ABC составляет площадь треугольника AMB?
Страница: << 37 38 39 40 41 42 43 >> [Всего задач: 460] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|