ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Основания трапеции равны 1,8 и 1,2; боковые стороны, равные 1,5 и 1,2, продолжены до взаимного пересечения. Проверьте, что многочлены Чебышёва Tn(x) и Un(x) (см. задачу
61099)
удовлетворяют начальным условиям Известно, что число a положительно, а неравенство 1 < xa < 2 имеет ровно три решения в целых числах. Имеется несколько камней, масса каждого из которых не превосходит 2 кг, а общая масса равна 100 кг. Из них выбирается несколько камней, суммарная масса которых отличается от 10 кг на наименьшее возможное для данного набора число d. Какое максимальное значение может принимать число d для всевозможных наборов камней? Сумма положительных чисел x1, x2, ..., xn равна ½. Докажите, что Имеются 2013 карточек, на которых написана цифра 1, и 2013 карточек, на которых написана цифра 2. Вася складывает из этих карточек 4026-значное число. За один ход Петя может поменять местами некоторые две карточки и заплатить Васе 1 рубль. Процесс заканчивается, когда у Пети получается число, кратное 11. Какую наибольшую сумму может заработать Вася, если Петя стремится заплатить как можно меньше? Решите уравнение tanπx=[lgπx]−[lg[πx]], где [a] обозначает наибольшее целое число, не превосходящее a. Девять чисел таковы, что сумма каждых четырёх из них меньше суммы пяти остальных. Докажите, что все числа положительны. Дано 100 чисел a1, a2, a3, ..., a100, удовлетворяющих условиям:
В треугольнике ABC из вершины A проведена прямая,
пересекающая сторону BC в точке D, находящейся между точками B и
C, причём
Из одной точки проведены к данной прямой перпендикуляр и две наклонные. На листе бумаги отмечены точки A, B, C, D. Распознающее устройство может абсолютно точно выполнять два типа операций: а) измерять в сантиметрах расстояние между двумя заданными точками; б) сравнивать два заданных числа. Какое наименьшее число операций нужно выполнить этому устройству, чтобы наверняка определить, является ли четырёхугольник ABCD прямоугольником? Докажите, что
В угол вписаны две окружности; у них есть общая внутренняя касательная T1T2 (T1 и T2 — точки касания), которая пересекает стороны угла в точках A1 и A2. Докажите, что A1T1 = A2T2 (или, что эквивалентно, A1T2 = A2T1).
С помощью циркуля и линейки постройте точку так, чтобы касательные, проведённые из неё к двум данным окружностям, были равны данным отрезкам.
|
Страница: << 78 79 80 81 82 83 84 >> [Всего задач: 772]
Окружность касается одной стороны прямого угла с вершиной O и пересекает вторую сторону в точках A и B. Найдите радиус окружности, если OA = a и OB = b.
В трапеции ABCD известно, что
В трапеции ABCD известно, что
С помощью циркуля и линейки постройте точку так, чтобы касательные, проведённые из неё к двум данным окружностям, были равны данным отрезкам.
С помощью циркуля и линейки постройте точку, из которой две данные окружности были бы видны под данными углами.
Страница: << 78 79 80 81 82 83 84 >> [Всего задач: 772]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке