Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

Пусть точка z движется по единичной окружности против часовой стрелки. Опишите движение следующих точек
  а)  2z2;   б)  z + 3z2;   в) 3z + z2;   г)  z – 3;   д)  (z – i)–1;   е)  (z – 2)–1;   ж)  Rz + ρzn  (ρ < R).

Вниз   Решение


На сторонах выпуклого четырёхугольника ABCD, площадь которого равна 1, взяты точки: K — на AB, L — на BC, M — на CD, N — на AD. При этом $ {\frac{AK}{KB}}$ = 2, $ {\frac{BL}{LC}}$ = $ {\frac{1}{3}}$, $ {\frac{CM}{MD}}$ = 1, $ {\frac{DN}{NA}}$ = $ {\frac{1}{5}}$. Найдите площадь шестиугольника AKLCMN.

ВверхВниз   Решение


Дан многоугольник, у которого каждые две соседние стороны перпендикулярны. Назовём две его вершины не дружными, если биссектрисы многоугольника, выходящие из этих вершин, перпендикулярны. Докажите, что для любой вершины количество не дружных с ней вершин чётно.

ВверхВниз   Решение


Муха двигается из начала координат только вправо или вверх по линиям целочисленной сетки (монотонное блуждание). В каждом узле сетки муха случайным образом выбирает направление дальнейшего движения: вверх или вправо.
  а) Докажите, что рано или поздно муха достигнет точки с абсциссой 2011.
  б) Найдите математическое ожидание ординаты Мухи в момент, когда муха достигла абсциссы 2011.

ВверхВниз   Решение


С помощью циркуля и линейки постройте треугольник, если дана одна его вершина и три прямых, на которых лежат его биссектрисы.

ВверхВниз   Решение


а) Дано шестизначное число  abcdef,  причём  abc + def  делится на 37. Докажите, что и само число делится на 37.
б) Сформулируйте и докажите признак делимости на 37.

ВверхВниз   Решение


Правильный треугольник ABC со стороной a и два ромба ACMN и ABFE расположены так, что точки M и B лежат по разные стороны от прямой AC, а точки F и C — по разные стороны от прямой AB. Найдите расстояние между центрами ромбов, если $ \angle$EAB = $ \angle$ACM = $ \alpha$ ( $ \alpha$ < 90o).

ВверхВниз   Решение


Точка O — центр окружности, вписанной в равнобедренный треугольник ABC (AB = BC). Прямая AO пересекает отрезок BC в точке M. Найдите углы и площадь треугольника ABC, если AO = 3, OM = $ {\frac{27}{11}}$.

ВверхВниз   Решение


Сформулируйте и докажите признаки делимости на 2n и 5n.

ВверхВниз   Решение


В треугольник со сторонами AB = 4, BC = 2, AC = 3 вписана окружность. Найдите площадь треугольника AMN, где M, N — точки касания этой окружности со сторонами AB и AC соответственно.

ВверхВниз   Решение


На плоскости заданы две пересекающиеся прямые, и на них отмечено по одной точке (D и E). Постройте треугольник ABC, у которого биссектрисы CD и AE лежат на данных прямых, а основания этих биссектрис— данные точки D и E.

ВверхВниз   Решение


Постройте треугольник ABC, зная три точки A1, B1, C1, в которых биссектрисы его углов пересекают описанную окружность.

Вверх   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 59]      



Задача 67236

Темы:   [ Построение треугольников по различным точкам ]
[ Вписанные и описанные окружности ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 4
Классы: 8,9,10,11

Биссектриса угла $A$ треугольника $ABC$ при продолжении пересекает описанную около него окружность $\omega$ в точке $W$. Окружность $s$, построенная на отрезке $AH$ как на диаметре ($H$ – ортоцентр в треугольнике $ABC$), пересекает $\omega$ в точке $P$. Восстановите треугольник $ABC$, если остались точки $A$, $P$, $W$.
Прислать комментарий     Решение


Задача 76494

Тема:   [ Построение треугольников по различным точкам ]
Сложность: 4
Классы: 8,9

Построить треугольник ABC по трем точкам H1, H2 и H3, которые являются симметричными отражениями точки пересечения высот искомого треугольника относительно его сторон.
Прислать комментарий     Решение


Задача 110752

Темы:   [ Построение треугольников по различным точкам ]
[ Биссектриса делит дугу пополам ]
[ Конкуррентность высот. Углы между высотами. ]
[ Вписанные и описанные окружности ]
[ Свойства серединных перпендикуляров к сторонам треугольника. ]
Сложность: 4
Классы: 8,9,10

В остроугольном треугольнике отметили отличные от вершин точки пересечения описанной окружности с высотами, проведенными из двух вершин, и биссектрисой, проведенной из третьей вершины, после чего сам треугольник стерли. Восстановите его.


Прислать комментарий     Решение

Задача 116905

Темы:   [ Построение треугольников по различным точкам ]
[ Построения с помощью вычислений ]
[ Вписанные и описанные окружности ]
[ Отношение, в котором биссектриса делит сторону ]
[ Формула Герона ]
Сложность: 4
Классы: 8,9,10

В треугольнике ABC провели биссектрису CL. В треугольники CAL и CBL вписали окружности, которые касаются прямой AB в точках M и N соответственно. Затем все, кроме точек A, L, M и N, стерли. С помощью циркуля и линейки восстановите треугольник.

Прислать комментарий     Решение

Задача 54569

Темы:   [ Построение треугольников по различным точкам ]
[ Величина угла между двумя хордами и двумя секущими ]
Сложность: 4
Классы: 8,9

Постройте треугольник ABC, зная три точки A1, B1, C1, в которых биссектрисы его углов пересекают описанную окружность.

Прислать комментарий     Решение


Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 59]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .