Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Автор: Фомин С.В.

Натуральное число n записано в десятичной системе счисления. Известно, что если какая-то цифра входит в эту запись, то n делится нацело на эту цифру (0 в записи не встречается). Какое максимальное число различных цифр может содержать эта запись?

Вниз   Решение


Какую наименьшую ширину должна иметь бесконечная полоса бумаги, из которой можно вырезать любой треугольник площадью 1?

ВверхВниз   Решение


Диагонали выпуклого четырёхугольника равны 12 и 18 и пересекаются в точке O.
Найдите стороны четырёхугольника с вершинами в точках пересечения медиан треугольников AOB, BOC, COD и AOD.

Вверх   Решение

Задачи

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 71]      



Задача 111570

Темы:   [ Правильный (равносторонний) треугольник ]
[ Признаки и свойства параллелограмма ]
[ Параллелограмм Вариньона ]
Сложность: 3+
Классы: 8,9

На сторонах AB и AC равностороннего треугольника ABC выбраны точки P и R соответственно так, что  AP = CR.  Точка M – середина отрезка PR.
Докажите, что  BR = 2AM .

Прислать комментарий     Решение

Задача 65398

Темы:   [ Тетраэдр (прочее) ]
[ Сфера, вписанная в тетраэдр ]
[ Параллелограмм Вариньона ]
[ Свойства сечений ]
[ Центр масс ]
Сложность: 4
Классы: 10,11

У тетраэдра ABCD сумма площадей двух граней (с общим ребром AB) равна сумме площадей оставшихся граней (с общим ребром CD). Докажите, что середины рёбер BC, AD, AC и BD лежат в одной плоскости, причём эта плоскость содержит центр сферы, вписанной в тетраэдр ABCD.

Прислать комментарий     Решение

Задача 103916

Темы:   [ Средняя линия треугольника ]
[ Ортоцентр и ортотреугольник ]
[ Параллелограмм Вариньона ]
[ Теорема о группировке масс ]
Сложность: 4
Классы: 8,9,10

Пусть P – точка пересечения диагоналей четырёхугольника ABCD, M – точка пересечения прямых, соединяющих середины его противоположных сторон, O – точка пересечения серединных перпендикуляров к диагоналям, H – точка пересечения прямых, соединяющих ортоцентры треугольников APD и BPC, APB и CPD. Доказать, что M – середина OH.

Прислать комментарий     Решение

Задача 107834

Темы:   [ Четырехугольники (экстремальные свойства) ]
[ Перенос помогает решить задачу ]
[ Параллелограмм Вариньона ]
[ Неравенство треугольника (прочее) ]
Сложность: 4+
Классы: 8,9,10

Докажите, что среди четырехугольников с заданными длинами диагоналей и углом между ними наименьший периметр имеет параллелограмм.
Прислать комментарий     Решение


Задача 54664

Темы:   [ Свойства медиан. Центр тяжести треугольника. ]
[ Признаки подобия ]
[ Средняя линия треугольника ]
[ Параллелограмм Вариньона ]
Сложность: 3+
Классы: 8,9

Диагонали выпуклого четырёхугольника равны 12 и 18 и пересекаются в точке O.
Найдите стороны четырёхугольника с вершинами в точках пересечения медиан треугольников AOB, BOC, COD и AOD.

Прислать комментарий     Решение

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 71]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .