Processing math: 100%
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 14 задач
Версия для печати
Убрать все задачи

Дан остроугольный треугольник ABC.
Найдите на сторонах BC, CA, AB такие точки A', B', C', чтобы наибольшая сторона треугольника A'B'C' была минимальна.

Вниз   Решение


В треугольнике ABC угол BAC прямой, длины сторон AB и BC равны соответственно 1 и 3. Точка K делит сторону AC в отношении 7:1, считая от точки A. Что больше: длина AC или длина BK?

ВверхВниз   Решение


Угол между радиусами OA и OB окружности равен 60°. Найдите хорду AB, если радиус окружности равен R.

ВверхВниз   Решение


Из точки, данной на окружности, проведены диаметр и хорда, равная радиусу. Найдите угол между ними.

ВверхВниз   Решение


Диагональ MP выпуклого четырёхугольника MNPQ, вписанного в окружность, является биссектрисой угла NMQ и пересекается с диагональю NQ в точке T. Найдите NP, если  MT = 5,  TP = 4.

ВверхВниз   Решение


На хорде AB окружности S с центром O взята точка C. Описанная окружность треугольника AOC пересекает окружность S в точке D.
Докажите, что  BC = CD.

ВверхВниз   Решение


Хорда пересекает диаметр под углом в 30o и делит его на два отрезка, равные 2 и 6. Найдите расстояние от центра окружности до этой хорды.

ВверхВниз   Решение


На каждой из 99 карточек написано действительное число. Все 99 чисел различны, а их общая сумма иррациональна. Стопка из 99 карточек называется неудачной, если для каждого натурального k от 1 до 99 сумма чисел на верхних k карточках иррациональна. Петя вычислил, сколькими способами можно сложить исходные карточки в неудачную стопку. Какое наименьшее значение он мог получить?

ВверхВниз   Решение


К Ивану на день рождения пришли 3n гостей. У Ивана есть 3n цилиндров с написанными сверху буквами А, Б и В, по n штук каждого типа. Иван хочет устроить бал: надеть на гостей цилиндры и выстроить их в хороводы (один или больше) так, чтобы длина каждого хоровода делилась на 3, а при взгляде на любой хоровод сверху читалось бы по часовой стрелке АБВАБВ...АБВ. Докажите, что Иван может устроить бал ровно (3n)! различными способами. (Цилиндры с одинаковыми буквами неразличимы; все гости различны.)

ВверхВниз   Решение


Из точки, данной на окружности, проведены две хорды, каждая из которых равна радиусу. Найдите угол между ними.

ВверхВниз   Решение


а) Из произвольной точки M внутри правильного n-угольника проведены перпендикуляры  MK1, MK2, ..., MKn  к его сторонам (или их продолжениям). Докажите, что      (O – центр n-угольника).

б) Докажите, что сумма векторов, проведённых из любой точки M внутри правильного тетраэдра перпендикулярно к его граням, равна     где O – центр тетраэдра.

ВверхВниз   Решение


Четыре сферы радиуса 1 попарно касаются. Найдите радиус сферы, касающейся всех четырёх сфер.

ВверхВниз   Решение


Радиус окружности равен 13, хорда равна 10. Найдите её расстояние от центра.

ВверхВниз   Решение


В треугольнике ABC стороны CB и CA равны соответственно a и b. Биссектриса угла ACB пересекает сторону AB в точке K, а описанную окружность треугольника ABC – в точке M. Описанная окружность треугольника AMK вторично пересекает прямую CA в точке P. Найдите AP.

Вверх   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 501]      



Задача 52958

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 8,9

Диагонали выпуклого четырёхугольника ABCD, вписанного в окружность, пересекаются в точке E. Известно, что диагональ BD является биссектрисой угла ABC и что  BD = 25,  а  CD = 15.  Найдите BE.

Прислать комментарий     Решение

Задача 52959

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 8,9

Диагональ MP выпуклого четырёхугольника MNPQ, вписанного в окружность, является биссектрисой угла NMQ и пересекается с диагональю NQ в точке T. Найдите NP, если  MT = 5,  TP = 4.

Прислать комментарий     Решение

Задача 53054

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 8,9

Из вершины тупого угла A треугольника ABC опущена высота AD. Из точки D радиусом, равным AD, описана окружность, пересекающая стороны треугольника AB и AC в точках M и N соответственно. Найдите сторону AC, если известно, что  AB = c,  AM = m  и  AN = n.

Прислать комментарий     Решение


Задача 53568

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3+
Классы: 8,9

Диагонали четырёхугольника ABCD, вершины которого расположены на окружности, пересекаются в точке M. Известно, что  ∠ABC = 72°,  ∠BCD = 102°,
AMD = 110°.  Найдите ∠ACD.

Прислать комментарий     Решение

Задача 54789

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вспомогательные равные треугольники ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC стороны CB и CA равны соответственно a и b. Биссектриса угла ACB пересекает сторону AB в точке K, а описанную окружность треугольника ABC – в точке M. Описанная окружность треугольника AMK вторично пересекает прямую CA в точке P. Найдите AP.

Прислать комментарий     Решение

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 501]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .