ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В треугольнике ABC стороны CB и CA равны соответственно a и b. Биссектриса угла ACB пересекает сторону AB в точке K, а описанную окружность треугольника ABC – в точке M. Описанная окружность треугольника AMK вторично пересекает прямую CA в точке P. Найдите AP.

   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 499]      



Задача 52958

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 8,9

Диагонали выпуклого четырёхугольника ABCD, вписанного в окружность, пересекаются в точке E. Известно, что диагональ BD является биссектрисой угла ABC и что  BD = 25,  а  CD = 15.  Найдите BE.

Прислать комментарий     Решение

Задача 52959

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 8,9

Диагональ MP выпуклого четырёхугольника MNPQ, вписанного в окружность, является биссектрисой угла NMQ и пересекается с диагональю NQ в точке T. Найдите NP, если  MT = 5,  TP = 4.

Прислать комментарий     Решение

Задача 53054

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 8,9

Из вершины тупого угла A треугольника ABC опущена высота AD. Из точки D радиусом, равным AD, описана окружность, пересекающая стороны треугольника AB и AC в точках M и N соответственно. Найдите сторону AC, если известно, что  AB = c,  AM = m  и  AN = n.

Прислать комментарий     Решение


Задача 53568

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3+
Классы: 8,9

Диагонали четырёхугольника ABCD, вершины которого расположены на окружности, пересекаются в точке M. Известно, что  ∠ABC = 72°,  ∠BCD = 102°,
AMD = 110°.  Найдите ∠ACD.

Прислать комментарий     Решение

Задача 54789

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вспомогательные равные треугольники ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC стороны CB и CA равны соответственно a и b. Биссектриса угла ACB пересекает сторону AB в точке K, а описанную окружность треугольника ABC – в точке M. Описанная окружность треугольника AMK вторично пересекает прямую CA в точке P. Найдите AP.

Прислать комментарий     Решение

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 499]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .