Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

В треугольнике даны два угла β и γ и радиус R описанной окружности. Найдите радиус вписанной окружности.

Вниз   Решение


В параллелограмме KLMN сторона KL равна 8. Окружность, касающаяся сторон NK и NM, проходит через точку L и пересекает стороны KL и ML в точках C и D соответственно. Известно, что KC : LC = 4 : 5 и LD : MD = 8 : 1. Найдите сторону KN.

ВверхВниз   Решение


Петров забронировал квартиру в доме-новостройке, в котором пять одинаковых подъездов. Изначально подъезды нумеровались слева направо, и квартира Петрова имела номер 636. Потом застройщик поменял нумерацию на противоположную (справа налево, см. рисунок). Тогда квартира Петрова стала иметь номер 242. Сколько квартир в доме? (Порядок нумерации квартир внутри подъезда не изменялся.)

ВверхВниз   Решение


Из четырёх палочек сложен контур параллелограмма. Обязательно ли из них можно сложить контур треугольника (одна из сторон треугольника складывается из двух палочек)?

ВверхВниз   Решение


Прямая OA касается окружности в точке A, а хорда BC параллельна OA. Прямые OB и OC вторично пересекают окружность в точках K и L.
Докажите, что прямая KL делит отрезок OA пополам.

ВверхВниз   Решение


а) Дан выпуклый четырёхугольник ABCD. Пусть  r1r2r3r4  – взятые в порядке возрастания радиусы вписанных окружностей треугольников ABC, BCD, CDA, DAB. Может ли оказаться, что  r4 > 2r3?

б) В выпуклом четырёхугольнике ABCD диагонали пересекаются в точке E. Пусть  r1r2r3r4  – взятые в порядке возрастания радиусы вписанных окружностей треугольников ABE, BCE, CDE, DAE. Может ли оказаться, что  r2 > 2r1?

ВверхВниз   Решение


На сторонах BC и CD квадрата ABCD отмечены точки M и N соответственно так, что лучи AM и AN делят угол BAD на три равные части. ME – высота треугольника MAN. Найдите угол EDN.

ВверхВниз   Решение


В равнобедренный треугольник ABC вписан ромб DECF так, что вершина E лежит на стороне BC, вершина F – на стороне AC и вершина D – на стороне AB. Найдите длину стороны ромба, если  AB = BC = 12,  AC = 6.

ВверхВниз   Решение


Прямая, проходящая через центры вписанной и описанной окружностей треугольника, перпендикулярна одной из его биссектрис. Известно, что отношение расстояния между центрами вписанной и описанной окружностей к радиусу описанной окружности равно h. Найдите углы треугольника.

ВверхВниз   Решение


Две равные окружности с центрами O1 и O2 пересекаются в точках A и B. Отрезок O1O2 пересекает эти окружности в точках M и N.
Докажите, что четырёхугольники O1AO2B и AMBN – ромбы.

ВверхВниз   Решение


В квадрат площадью 24 вписан прямоугольник так, что на каждой стороне квадрата лежит одна вершина прямоугольника. Стороны прямоугольника относятся как  1 : 3.
Найдите площадь прямоугольника.

Вверх   Решение

Задачи

Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 993]      



Задача 54804

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3
Классы: 8,9

В квадрат, площадь которого равна 18, вписан прямоугольник так, что на каждой стороне квадрата лежит одна вершина прямоугольника. Стороны прямоугольника относятся как  1 : 2.
Найдите площадь прямоугольника.

Прислать комментарий     Решение

Задача 54805

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3
Классы: 8,9

В квадрат площадью 24 вписан прямоугольник так, что на каждой стороне квадрата лежит одна вершина прямоугольника. Стороны прямоугольника относятся как  1 : 3.
Найдите площадь прямоугольника.

Прислать комментарий     Решение

Задача 54865

Темы:   [ Параллелограмм Вариньона ]
[ Теорема косинусов ]
Сложность: 3
Классы: 8,9

В четырёхугольнике ABCD диагонали AC и BD относятся как 1:4 , а угол между ними равен 60o . Чему равен больший из отрезков, соединяющих середины противоположных сторон четырёхугольника ABCD , если меньший равен ?
Прислать комментарий     Решение


Задача 56463

Темы:   [ Признаки и свойства параллелограмма ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 3
Классы: 8,9

На диагонали BD параллелограмма ABCD взята точка K. Прямая AK пересекает прямые BC и CD в точках L и M. Докажите, что  AK² = LK·KM.

Прислать комментарий     Решение

Задача 56466

Темы:   [ Параллелограмм Вариньона ]
[ Правильный (равносторонний) треугольник ]
Сложность: 3
Классы: 8,9

Точки A и B высекают на окружности с центром O дугу величиной 60°. На этой дуге взята точка M.
Докажите, что прямая, проходящая через середины отрезков MA и OB, перпендикулярна прямой, проходящей через середины отрезков MB и OA.

Прислать комментарий     Решение

Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 993]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .