ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В треугольнике даны два угла β и γ и радиус R описанной окружности. Найдите радиус вписанной окружности.
В параллелограмме KLMN сторона KL равна 8. Окружность, касающаяся сторон NK и NM, проходит через точку L и пересекает стороны KL и ML в точках C и D соответственно. Известно, что KC : LC = 4 : 5 и LD : MD = 8 : 1. Найдите сторону KN.
Петров забронировал квартиру в доме-новостройке, в котором пять одинаковых подъездов. Изначально подъезды нумеровались слева направо, и квартира Петрова имела номер 636. Потом застройщик поменял нумерацию на противоположную (справа налево, см. рисунок). Тогда квартира Петрова стала иметь номер 242. Сколько квартир в доме? (Порядок нумерации квартир внутри подъезда не изменялся.) Из четырёх палочек сложен контур параллелограмма. Обязательно ли из них можно сложить контур треугольника (одна из сторон треугольника складывается из двух палочек)? Прямая OA касается окружности в точке A, а хорда BC
параллельна OA. Прямые OB и OC вторично пересекают окружность в точках K и L. а) Дан выпуклый четырёхугольник ABCD. Пусть r1 ≤ r2 ≤ r3 ≤ r4 – взятые в порядке возрастания радиусы вписанных окружностей треугольников ABC, BCD, CDA, DAB. Может ли оказаться, что r4 > 2r3? б) В выпуклом четырёхугольнике ABCD диагонали пересекаются в точке E. Пусть r1 ≤ r2 ≤ r3 ≤ r4 – взятые в порядке возрастания радиусы вписанных окружностей треугольников ABE, BCE, CDE, DAE. Может ли оказаться, что r2 > 2r1? На сторонах BC и CD квадрата ABCD отмечены точки M и N соответственно так, что лучи AM и AN делят угол BAD на три равные части. ME – высота треугольника MAN. Найдите угол EDN. В равнобедренный треугольник ABC вписан ромб DECF так, что вершина E лежит на стороне BC, вершина F – на стороне AC и вершина D – на стороне AB. Найдите длину стороны ромба, если AB = BC = 12, AC = 6.
Прямая, проходящая через центры вписанной и описанной окружностей треугольника, перпендикулярна одной из его биссектрис. Известно, что отношение расстояния между центрами вписанной и описанной окружностей к радиусу описанной окружности равно h. Найдите углы треугольника.
Две равные окружности с центрами O1 и O2 пересекаются в точках A и B. Отрезок O1O2 пересекает эти окружности в точках M и N. В квадрат площадью 24 вписан прямоугольник так, что на каждой стороне квадрата лежит одна вершина прямоугольника. Стороны прямоугольника относятся как 1 : 3. |
Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 993]
В квадрат, площадь которого равна 18, вписан прямоугольник так, что на каждой стороне квадрата лежит одна вершина прямоугольника. Стороны прямоугольника относятся как 1 : 2.
В квадрат площадью 24 вписан прямоугольник так, что на каждой стороне квадрата лежит одна вершина прямоугольника. Стороны прямоугольника относятся как 1 : 3.
В четырёхугольнике ABCD диагонали AC и BD относятся как 1:4 , а
угол между ними равен 60o . Чему равен больший из отрезков,
соединяющих середины противоположных сторон четырёхугольника ABCD ,
если меньший равен
На диагонали BD параллелограмма ABCD взята точка K. Прямая AK пересекает прямые BC и CD в точках L и M. Докажите, что AK² = LK·KM.
Точки A и B высекают на окружности с центром O дугу величиной 60°. На этой дуге взята точка M.
Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 993]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке