Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

На клетчатой бумаге выбраны три точки A, B, C, находящиеся в вершинах клеток. Докажите, что если треугольник ABC остроугольный, то внутри или на сторонах его есть по крайней мере еще одна вершина клетки.

Вниз   Решение


Даны пять точек некоторой окружности. С помощью одной линейки постройте шестую точку этой окружности.

ВверхВниз   Решение


Докажите, что все углы, образованные сторонами и диагоналями правильного n-угольника, кратны  180°/n.

ВверхВниз   Решение


В прямоугольном треугольнике ABC с прямым углом C, углом B, равным 30o, и катетом CA = 1, проведена медиана CD. Кроме того, из точки D под углом 15o к гипотенузе проведена прямая, пересекающая отрезок BC в точке F. Найдите площадь треугольника CDF. Укажите её приближённое значение в виде десятичной дроби с точностью до 0,01.

ВверхВниз   Решение


На сторонах $AB$, $BC$, $CA$ треугольника $ABC$ выбраны точки $P$, $Q$, $R$ соответственно так, что $AP=PR$, $CQ=QR$. Точка $H$ – ортоцентр треугольника $PQR$, точка $O$ – центр описанной окружности треугольника $ABC$. Докажите, что $OH \parallel AC$.

ВверхВниз   Решение


Сходимость итерационного процесса. Предположим, что функция f (x) отображает отрезок [a;b] в себя, и на этом отрезке | f'(x)| $ \leqslant$ q < 1. Докажите, что уравнение f (x) = x имеет на отрезке [a;b] единственный корень x*. Докажите, что при решении этого уравнения методом итераций будут выполняться неравенства:

| xn + 1 - xn| $\displaystyle \leqslant$ | x1 - x0| . qn,    | x* - xn| $\displaystyle \leqslant$ | x1 - x0| . $\displaystyle {\frac{q^n}{1-q}}$.


ВверхВниз   Решение


В равнобедренном треугольнике боковая сторона равна b. Расстояние между основаниями биссектрис треугольника, проведённых к боковым сторонам, равно m. Найдите основание треугольника.

Вверх   Решение

Задачи

Страница: << 49 50 51 52 53 54 55 >> [Всего задач: 604]      



Задача 54471

Темы:   [ Ортоцентр и ортотреугольник ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 8,9

Высоты равнобедренного остроугольного треугольника, в котором AB = BC, пересекаются в точке H.
Найдите площадь треугольника ABC, если  AH = 5,  а высота AD равна 8.

Прислать комментарий     Решение

Задача 54720

Темы:   [ Теорема синусов ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

Найдите радиус окружности, описанной около треугольника со сторонами a, a и b.

Прислать комментарий     Решение

Задача 54726

Темы:   [ Теорема синусов ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Биссектриса угла ]
Сложность: 3+
Классы: 8,9

Дан треугольник ABC, в котором  ∠A = α,  ∠B = β.  На стороне AB взята точка D, а на стороне AC – точка M, причём CD – биссектриса треугольника ABC,
DM || BC  и  AM = a.  Найдите CM.

Прислать комментарий     Решение

Задача 54823

Темы:   [ Отношение, в котором биссектриса делит сторону ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

В равнобедренном треугольнике боковая сторона равна b. Расстояние между основаниями биссектрис треугольника, проведённых к боковым сторонам, равно m. Найдите основание треугольника.

Прислать комментарий     Решение

Задача 54844

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Признаки подобия ]
[ Биссектриса угла ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC проведена биссектриса CD прямого угла ACB; DM и DN являются соответственно высотами треугольников ADC и BDC.
Найдите AC, если известно, что  AM = 4,  BN = 9.

Прислать комментарий     Решение

Страница: << 49 50 51 52 53 54 55 >> [Всего задач: 604]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .