Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Четыре точки окружности следуют в порядке: A, B, C, D. Продолжение хорды AB за точку B и хорды CD за точку C пересекаются в точке E, причём угол AED равен 60o. Угол ABD в три раза больше угла BAC. Докажите, что AD — диаметр окружности.

Вниз   Решение


Автор: Фольклор

На бесконечной во все стороны шахматной доске выделено некоторое множество клеток A. На всех клетках доски, кроме множества A, стоят короли. Все короли могут по команде одновременно сделать ход, заключающийся в том, что король либо остаётся на месте, либо занимает соседнее поле, то есть делает "ход короля". При этом он может занять и то поле, с которого сходит другой король, но в результате хода двум королям оказаться в одной клетке запрещается. Существует ли такое k и такой способ движения королей, что после k ходов вся доска будет заполнена королями? Рассмотрите варианты:
  а) A есть множество всех клеток, у которых обе координаты кратны 100 (предполагается, что одна горизонтальная и одна вертикальная линии занумерованы всеми целыми числами от минус бесконечности до бесконечности и каждая клетка доски обозначается двумя числами – координатами по этим двум осям);
  б) A есть множество всех клеток, каждая из которых бьётся хотя бы одним из 100 ферзей, расположенных каким-то фиксированным образом.

ВверхВниз   Решение


В некоторой стране есть столица и еще 100 городов. Некоторые города (в том числе и столица) соединены дорогами с односторонним движением. Из каждого нестоличного города выходит 20 дорог, и в каждый такой город входит 21 дорога. Докажите, что в столицу нельзя проехать ни из одного города.

ВверхВниз   Решение


В выпуклом четырёхугольнике ABCD  ∠A = ∠В = 60°  и  ∠СAВ = ∠CBD.  Докажите, что  AD + CB = AB.

ВверхВниз   Решение


Окружность с центром O проходит через вершины A и B треугольника ABC и пересекает сторону AC в точке M и сторону BC в точке N. Углы AOM и BON равны 60o. Расстояния от точки N до прямой AB равно 5$ \sqrt{3}$. Отрезок MN в четыре раза меньше отрезка AB. Найдите площадь треугольника ABC.

ВверхВниз   Решение


Рассматривается произвольный многоугольник (возможно, невыпуклый).
  а) Всегда ли найдётся хорда этого многоугольника, которая делит его площадь пополам?
  б) Докажите, что найдётся такая хорда, что площадь каждой из частей, на которые она разбивает многоугольник, не меньше чем ⅓ площади всего многоугольника.

  в) Можно ли в пункте б) заменить число ⅓ на большее?
(Хордой многоугольника называется отрезок, концы которого принадлежат контуру многоугольника, а сам он целиком принадлежит многоугольнику, включая контур).

ВверхВниз   Решение


Автор: Ильичев В.

По одной стороне бесконечного коридора расположено бесконечное количество комнат, занумерованных числами от минус бесконечности до плюс бесконечности. В комнатах живут 9 пианистов (в одной комнате могут жить несколько пианистов), кроме того, в каждой комнате находится по роялю. Каждый день какие-то два пианиста, живущие в соседних комнатах (k-й и (k+1)-й), приходят к выводу, что они мешают друг другу, и переселяются соответственно в (k–1)-ю и (k+2)-ю комнаты. Докажите, что через конечное число дней эти переселения прекратятся. (Пианисты, живущие в одной комнате, друг другу не мешают.)

ВверхВниз   Решение


В параллелограмме KLMN сторона KL равна 8. Окружность, касающаяся сторон NK и NM, проходит через точку L и пересекает стороны KL и ML в точках C и D соответственно. Известно, что KC : LC = 4 : 5 и LD : MD = 8 : 1. Найдите сторону KN.

ВверхВниз   Решение


Через точку C проведены две прямые, касающиеся заданной окружности в точках A и B. На большей из дуг AB взята точка D, для которой  CD = 2  и  sin∠ACD·sin∠BCD = 1/3.  Найдите расстояние от точки D до хорды AB.

Вверх   Решение

Задачи

Страница: << 42 43 44 45 46 47 48 >> [Всего задач: 1282]      



Задача 54816

Темы:   [ Угол между касательной и хордой ]
[ Вспомогательные подобные треугольники ]
[ Трапеции (прочее) ]
Сложность: 4-
Классы: 8,9

В трапеции ABCD с основаниями AD и BC диагонали AC и BD пересекаются в точке E. Вокруг треугольника ECB описана окружность, а касательная к этой окружности, проведённая в точке E, пересекает прямую AD в точке F таким образом, что точки A, D и F лежат последовательно на этой прямой. Известно, что  AF = a,  AD = b.  Найдите EF.

Прислать комментарий     Решение


Задача 54817

Темы:   [ Угол между касательной и хордой ]
[ Вспомогательные подобные треугольники ]
[ Трапеции (прочее) ]
Сложность: 4-
Классы: 8,9

Боковые стороны AB и CD трапеции ABCD пересекаются в точке K. Вокруг треугольника BCK описана окружность, а касательная к этой окружности, проведённая в точке K, пересекает прямую AD в точке L. Известно, что  LK = a,  AD = b.  Найдите AL, если  BC < AD.

Прислать комментарий     Решение

Задача 54829

Темы:   [ Угол между касательной и хордой ]
[ Вспомогательные подобные треугольники ]
[ Вспомогательная окружность ]
Сложность: 4-
Классы: 8,9

Через точку C проведены две прямые, касающиеся заданной окружности в точках A и B. На большей из дуг AB взята точка D, для которой  CD = 2  и  sin∠ACD·sin∠BCD = 1/3.  Найдите расстояние от точки D до хорды AB.

Прислать комментарий     Решение

Задача 55388

Темы:   [ Угол между касательной и хордой ]
[ Пересекающиеся окружности ]
[ Признаки и свойства параллелограмма ]
Сложность: 4-
Классы: 8,9

Окружности S1 и S2 пересекаются в точках A и P. Через точку A проведена касательная AB к окружности S1, а через точку P — прямая CD, параллельная прямой AB (точки B и C лежат на S2, точка D — на S1). Докажите, что ABCD — параллелограмм.

Прислать комментарий     Решение


Задача 55416

Темы:   [ Угол между касательной и хордой ]
[ Теорема косинусов ]
[ Вспомогательные подобные треугольники ]
[ Пересекающиеся окружности ]
Сложность: 4-
Классы: 8,9

Две окружности пересекаются в точках K и L. Их центры расположены по одну сторону от прямой, содержащей отрезок KL. Точки A и B лежат на разных окружностях. Прямая, содержащая отрезок AK, касается одной окружности в точке K. Прямая, содержащая отрезок BK, касается другой окружности также в точке K. Известно, что  AL = 3,  BL = 6,  а  tg∠AKB = – ½.  Найдите площадь треугольника AKB.

Прислать комментарий     Решение

Страница: << 42 43 44 45 46 47 48 >> [Всего задач: 1282]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .