ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Вне прямоугольного треугольника ABC на его катетах AC и BC построены квадраты ACDE и BCFG. Продолжение медианы CM треугольника ABC пересекает прямую DF в точке N. Найдите отрезок CN, если  AC = 4,  BC = 1.

   Решение

Задачи

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 541]      



Задача 54826

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Теорема косинусов ]
Сложность: 3+
Классы: 8,9

Прямая, проходящая через точки G и K, служит биссектрисой угла FGH, KF $ \perp$ GF, KH $ \perp$ GH, KF = KH = 8, GK = 17. Отрезок GL содержит точку F и FL = 2. Отрезок GM содержит точку H и HM = 19. Найдите LM.

Прислать комментарий     Решение


Задача 54834

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Медиана, проведенная к гипотенузе ]
[ Площадь треугольника (через высоту и основание) ]
Сложность: 3+
Классы: 8,9

Вне прямоугольного треугольника ABC на его катетах AC и BC построены квадраты ACDE и BCFG. Продолжение медианы CM треугольника ABC пересекает прямую DF в точке N. Найдите отрезок CN, если  AC = 4,  BC = 1.

Прислать комментарий     Решение

Задача 54917

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Пересекающиеся окружности ]
Сложность: 3+
Классы: 8,9

Окружности с центрами O1 и O2 имеют общую хорду AB, $ \angle$AO1B = 60o. Отношение длины первой окружности к длине второй равно $ \sqrt{2}$. Найдите угол AO2B.

Прислать комментарий     Решение


Задача 65962

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 9,10

Существует ли прямоугольный треугольник, у которого длины двух сторон – целые числа, а длина третьей стороны равна   ?

Прислать комментарий     Решение

Задача 78620

Тема:   [ Теорема Пифагора (прямая и обратная) ]
Сложность: 3+
Классы: 9,10

На каждой стороне прямоугольного треугольника построено по квадрату (пифагоровы штаны), и вся фигура вписана в круг. Для каких прямоугольных треугольников это можно сделать?
Прислать комментарий     Решение


Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 541]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .