Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

В окружность радиуса R вписан шестиугольник ABCDEF. Известно, что $ \angle$A = $ \angle$C = $ \angle$E, AB = a, CD = b, EF = c. Найдите площадь шестиугольника ABCDEF.

Вниз   Решение


Пусть A, B и C – три числа, большие 0 и меньшие 1, K – наибольшее из них. Докажите, что  1 – (1 – A)(1 – B)(1 – C) > K.

ВверхВниз   Решение


Сто положительных чисел C1, C2, ..., C100 удовлетворяют условиям  
Доказать, что среди них можно найти три числа, сумма которых больше 100.

ВверхВниз   Решение


Автор: Нилов Ф.

Центр окружности ω2 лежит на окружности ω1. Из точки X окружности ω1 проведены касательные XP и XQ к окружности ω2 (P и Q – точки касания), которые повторно пересекают ω1 в точках R и S. Докажите, что прямая PQ проходит через середину отрезка RS.

ВверхВниз   Решение


На данной окружности выбраны диаметрально противоположные точки A и B и третья точка C. Касательная, проведённая к окружности в точке A, и прямая BC пересекаются в точке M. Доказать, что касательная, проведённая к окружности в точке C, делит пополам отрезок AM.

ВверхВниз   Решение


Простые числа имеют только два различных делителя – единицу и само это число. А какие числа имеют только три различных делителя?

ВверхВниз   Решение


Дано 25 чисел. Какие бы три из них мы ни выбрали, среди оставшихся найдётся такое четвёртое, что сумма этих четырёх чисел будет положительна. Верно ли, что сумма всех чисел положительна?

ВверхВниз   Решение


Постройте последовательность полиномов, которая получается, если метод Лобачевского (см. задачу 61333) применить для приближенного нахождения корней многочлена  x² – x – 1.  Какие последовательности будут сходиться к корням x1 и x2, если  |x1| > |x2|?

ВверхВниз   Решение


Можно ли расставить в вершинах куба натуральные числа так, чтобы в каждой паре чисел, связанных ребром, одно из них делилось на другое, а во всех других парах такого не было?

ВверхВниз   Решение


Доказать, что для любых чисел  a1, ..., a1987  и положительных чисел  b1,..., b1987  справедливо неравенство

+ ... + .

ВверхВниз   Решение


На плоскости даны точки A и B. Найдите геометрическое место точек C, для которых $ \angle$C > $ \angle$B и треугольник ABC:

а) остроугольный;

б) тупоугольный.

Вверх   Решение

Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 122]      



Задача 115336

Темы:   [ Против большей стороны лежит больший угол ]
[ Вспомогательные равные треугольники ]
Сложность: 4
Классы: 8,9

Внутри треугольника ABC отмечена точка M так, что при этом  ∠BAM = ∠B,  ∠AMB = 100°,  ∠C = 70°.  Докажите, что  BM < AC.

Прислать комментарий     Решение

Задача 115340

Темы:   [ Против большей стороны лежит больший угол ]
[ Вписанные четырехугольники ]
Сложность: 4
Классы: 8,9

Точка O — центр описанной окружности вписанного четырёхугольника ABCD . Известно, что ABC > ADC и AOC = BAD = 110o . Докажите, что AB+AD>CD .
Прислать комментарий     Решение


Задача 115694

Темы:   [ Против большей стороны лежит больший угол ]
[ Неравенство треугольника (прочее) ]
[ Биссектриса делит дугу пополам ]
Сложность: 4
Классы: 8,9

Диагонали выпуклого четырёхугольника ABCD пересекаются в точке M . Пусть P и Q — центры окружностей, описанных вокруг треугольников ABM и CDM . Докажите, что AB+CD < 4PQ
Прислать комментарий     Решение


Задача 115914

Темы:   [ Против большей стороны лежит больший угол ]
[ Неравенство треугольника (прочее) ]
Сложность: 4
Классы: 8,9

В выпуклом четырёхугольнике ABCD равны углы при вершинах A и B . Известно также, что BC=1 и AD=3 . Докажите, что CD>2 .
Прислать комментарий     Решение


Задача 54933

Темы:   [ Против большей стороны лежит больший угол ]
[ ГМТ с ненулевой площадью ]
Сложность: 4
Классы: 8,9

На плоскости даны точки A и B. Найдите геометрическое место точек C, для которых $ \angle$C > $ \angle$B и треугольник ABC:

а) остроугольный;

б) тупоугольный.

Прислать комментарий     Решение


Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 122]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .