ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Площадь трапеции ABCD равна 6. Пусть E – точка пересечения продолжений боковых сторон этой трапеции. Через точку E и точку пересечения диагоналей трапеции проведена прямая, которая пересекает меньшее основание BC в точке P, а большее основание AD – в точке Q. Точка F лежит на отрезке EC, причём  EF : FC = EP : EQ = 1 : 3.  Найдите площадь треугольника EPF.

   Решение

Задачи

Страница: << 70 71 72 73 74 75 76 >> [Всего задач: 512]      



Задача 54895

Темы:   [ Вписанные и описанные окружности ]
[ Средняя линия треугольника ]
[ Вспомогательные подобные треугольники ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC точка O – центр описанной окружности, точка L – середина стороны AB. Описанная окружность треугольника ALO пересекает прямую AC в точке K. Найдите площадь треугольника ABC, если  ∠LOA = 45°,  LK = 8,  AK = 7.

Прислать комментарий     Решение

Задача 54984

Темы:   [ Замечательное свойство трапеции ]
[ Отношение площадей подобных треугольников ]
[ Вспомогательные подобные треугольники ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 3+
Классы: 8,9

Площадь трапеции ABCD равна 6. Пусть E – точка пересечения продолжений боковых сторон этой трапеции. Через точку E и точку пересечения диагоналей трапеции проведена прямая, которая пересекает меньшее основание BC в точке P, а большее основание AD – в точке Q. Точка F лежит на отрезке EC, причём  EF : FC = EP : EQ = 1 : 3.  Найдите площадь треугольника EPF.

Прислать комментарий     Решение

Задача 54985

Темы:   [ Замечательное свойство трапеции ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Вспомогательные подобные треугольники ]
[ Отношение площадей подобных треугольников ]
Сложность: 3+
Классы: 8,9

Площадь треугольника MNP равна 7. Через точку Q на стороне MN проведена прямая, параллельная стороне MP и пересекающая сторону NP в точке R. На отрезке QR взяты точки A и B. Найдите площадь треугольника NAR, если известно, что  QR : MP = QA : QB = 1 : 5  и прямая NB проходит через точку пересечения прямых MR и QP.

Прислать комментарий     Решение

Задача 55063

Темы:   [ Отношение площадей треугольников с общим углом ]
[ Трапеции (прочее) ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 8,9

В трапеции ABCD основание AB в три раза больше основания CD. На основании CD взята точка M, причём  MC = 2MDN – точка пересечения прямых BM и AC. Найдите отношение площади треугольника MNC к площади всей трапеции.

Прислать комментарий     Решение

Задача 56476

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Две касательные, проведенные из одной точки ]
[ Вспомогательные подобные треугольники ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 3+
Классы: 9

В трапецию ABCD  (BC || AD)  вписана окружность, касающаяся боковых сторон AB и CD в точках K и L соответственно, а оснований AD и BC в точках M и N.
  а) Пусть Q – точка пересечения отрезков BM и AN. Докажите, что  KQ || AD.
  б) Докажите, что  AK·KB = CL·LD.

Прислать комментарий     Решение

Страница: << 70 71 72 73 74 75 76 >> [Всего задач: 512]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .