ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Из точки P, расположенной внутри остроугольного треугольника ABC, опущены перпендикуляры на стороны AB, BC и CA. Перпендикуляры соответственно равны l, m, n. Вычислите площадь треугольника ABC, если углы BAC, ABC и ACB соответственно равны $ \alpha$, $ \beta$ и $ \gamma$.

   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 102]      



Задача 54996

Темы:   [ Отношение площадей подобных треугольников ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 4+
Классы: 8,9

Из точки P, расположенной внутри остроугольного треугольника ABC, опущены перпендикуляры на стороны AB, BC и CA. Перпендикуляры соответственно равны l, m, n. Вычислите площадь треугольника ABC, если углы BAC, ABC и ACB соответственно равны $ \alpha$, $ \beta$ и $ \gamma$.

Прислать комментарий     Решение


Задача 56489

Темы:   [ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Отношение площадей подобных треугольников ]
Сложность: 2+
Классы: 8,9

На стороне AC треугольника ABC взята точка E. Через точку E проведены прямая DE параллельно стороне BC и прямая EF параллельно стороне AB (D и E — точки соответственно на этих сторонах). Докажите, что SBDEF = 2$ \sqrt{S_{ADE}\cdot S_{EFC}}$.
Прислать комментарий     Решение


Задача 56490

Темы:   [ Площадь трапеции ]
[ Отношение площадей подобных треугольников ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 2+
Классы: 8,9

На боковых сторонах AB и CD трапеции ABCD взяты точки M и N так, что отрезок MN параллелен основаниям и делит площадь трапеции пополам. Найдите длину MN, если BC = a и AD = b.
Прислать комментарий     Решение


Задача 52397

Темы:   [ Признаки подобия ]
[ Отношение площадей подобных треугольников ]
[ Треугольник, образованный основаниями двух высот и вершиной ]
Сложность: 3
Классы: 8,9

На стороне BC треугольника ABC как на диаметре построена окружность, пересекающая стороны AB и AC в точках M и N.
Найдите площадь треугольника AMN, если площадь треугольника ABC равна S, а угол A равен α.

Прислать комментарий     Решение

Задача 53855

Темы:   [ Площадь многоугольника ]
[ Отношение площадей подобных треугольников ]
Сложность: 3
Классы: 8,9

В квадрате ABCD площади 1 сторона AD продолжена за точку D и на продолжении взята точка O,  OD = 3.  Из точки O проведены два луча. Первый пересекает отрезок CD в точке M и отрезок AB в точке N, второй пересекает отрезок CD в точке L и отрезок BC в точке K,  ON = a,  ∠BKL = α.  Найдите площадь многоугольника BKLMN.

Прислать комментарий     Решение

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 102]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .