Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Пусть M и N — середины противоположных сторон соответственно BC и AD выпуклого четырёхугольника ABCD, отрезки AM и BN пересекаются в точке P, а отрезки DM и CN — в точке Q. Докажите, что сумма площадей треугольников APB и CQD равна площади четырёхугольника MPNQ.

   Решение

Задачи

Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 462]      



Задача 111575

Темы:   [ Отношение площадей треугольников с общим углом ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 4
Классы: 8,9

В треугольнике ABC точка D – середина стороны AB . Можно ли так расположить точки E и F на сторонах AC и BC соответственно, чтобы площадь треугольника DEF оказалась больше суммы площадей треугольников AED и BFD ?
Прислать комментарий     Решение


Задача 111656

Темы:   [ Отношения площадей (прочее) ]
[ Перегруппировка площадей ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 4
Классы: 8,9

На стороне AB четырёхугольника ABCD взяты точки A1 и B1, а на стороне CD – точки C1 и D1, причём  AA1 = BB1 = pAB  и  CC1 = DD1 = pCD,  где
p < ½.  Докажите, что  SA1B1C1D1 = (1 – 2p)SABCD.

Прислать комментарий     Решение

Задача 111674

Темы:   [ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Четырехугольник: вычисления, метрические соотношения. ]
Сложность: 4
Классы: 8,9

Выпуклый четырёхугольник разбит диагоналями на четыре треугольника, площади которых выражаются целыми числами. Докажите, что произведение этих чисел предвтавляет собой точный квадрат.
Прислать комментарий     Решение


Задача 111675

Темы:   [ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Четырехугольник: вычисления, метрические соотношения. ]
Сложность: 4
Классы: 8,9

Диагонали четырёхугольника $ABCD$ пересекаются в точке $P$, причём $S^2_{\Delta ABP} + S^2_{\Delta CDP} = S^2_{\Delta BCP} + S^2_{\Delta ADP}$. Докажите, что $P$ — середина одной из диагоналей.
Прислать комментарий     Решение


Задача 115722

Темы:   [ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 4
Классы: 8,9

На сторонах AB и CD выпуклого четырёхугольника ABCD даны точки E и H соответственно. Докажите, что если треугольники ABH и CDE равновелики и AE:BE=DH:CH , то прямая BC параллельна прямой AD .
Прислать комментарий     Решение


Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 462]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .