Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

В треугольнике ABC отметили точки A', B' касания сторон BC, AC c вписанной окружностью и точку G пересечения отрезков AA' и BB'. После этого сам треугольник стерли. Восстановите его с помощью циркуля и линейки.

Вниз   Решение


Диагонали вписанного четырёхугольника ABCD пересекаются в точке N. Описанные окружности треугольников ANB и CND повторно пересекают стороны BC и AD в точках A1, B1, C1, D1. Докажите, что четырёхугольник A1B1C1D1 вписан в окружность с центром N.

ВверхВниз   Решение


Точка M лежит на стороне BC параллелограмма ABCD с углом 45o при вершине A, причём $ \angle$AMD = 90o и BM : MC = 2 : 3. Найдите отношение соседних сторон параллелограмма.

ВверхВниз   Решение


Дан треугольник ABC. Найдите множество центров прямоугольников PQRS, вершины Q и P которых лежат на стороне AC, вершины R и S — на сторонах AB и BC соответственно.

ВверхВниз   Решение


В треугольнике ABC угол A равен 45o, а угол C — острый. Из середины стороны BC опущен перпендикуляр NM на сторону AC. Площади треугольников NMC и ABC относятся, как 1:8. Найдите углы треугольника ABC.

ВверхВниз   Решение


На сторонах AB и AD параллелограмма ABCD взяты соответственно точки E и F, причём отрезок EF параллелен диагонали BD. Докажите, что площади треугольников BCE и CDF равны.

ВверхВниз   Решение


В треугольнике PQR сторона PQ не больше чем 9, сторона PR не больше чем 12. Площадь треугольника не меньше чем 54.
Найдите его медиану, проведённую из вершины P.

ВверхВниз   Решение


Найдите сумму степеней порядка s всех корней уравнения  zn = 1,  где s – целое число.

ВверхВниз   Решение


В окружность радиуса 6 с центром в точке O вписан четырёхугольник ABCD. Его диагонали AC и BD взаимно перпендикулярны и пересекаются в точке K. Точки E и F являются соответственно серединами AC и BD. Отрезок OK равен 5, а площадь четырёхугольника OEKF равна 12. Найдите площадь четырёхугольника ABCD.

ВверхВниз   Решение


Кощей придумал для Ивана-дурака испытание. Он дал Ивану волшебную дудочку, на которой можно играть только две ноты  – до и си. Для прохождения испытания Ивану нужно сыграть какую-нибудь мелодию из 300 нот на свой выбор. Но до того, как он начнёт играть, Кощей выбирает и объявляет запретными одну мелодию из пяти нот, одну  – из шести нот, ..., одну  – из 30 нот. Если в какой-то момент последние сыгранные ноты образуют одну из запретных мелодий, дудочка перестаёт звучать. Сможет ли Иван пройти испытание, какие бы мелодии Кощей ни объявил запретными?

ВверхВниз   Решение


В треугольнике ABC проведены высоты AD и CE. Найдите отношение площадей треугольников ABC и AED, если AB = 6, AC = 5, CB = 7.

Вверх   Решение

Задачи

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 462]      



Задача 55076

Темы:   [ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 3+
Классы: 8,9

На стороне AB треугольника ABC взята точка E, а на стороне BC — точка D, причём AE = 2, а CD = 11. Прямые AD и CE пересекаются в точке O. Найдите площадь четырёхугольника BDOE, если AB = BC = 8, а AC = 6.

Прислать комментарий     Решение


Задача 55077

Темы:   [ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 3+
Классы: 8,9

На стороне AB треугольника ABC взята точка D, а на стороне AC — точка E, причём AE = BD = 2. Прямые BE и CD пересекаются в точке O. Найдите площадь треугольника BOC, если AB = BC = 5, а AC = 6.

Прислать комментарий     Решение


Задача 55088

Темы:   [ Отношение площадей треугольников с общим углом ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 3+
Классы: 8,9

На сторонах выпуклого четырёхугольника ABCD, площадь которого равна 1, взяты точки: K — на AB, L — на BC, M — на CD, N — на AD. При этом $ {\frac{AK}{KB}}$ = 2, $ {\frac{BL}{LC}}$ = $ {\frac{1}{3}}$, $ {\frac{CM}{MD}}$ = 1, $ {\frac{DN}{NA}}$ = $ {\frac{1}{5}}$. Найдите площадь шестиугольника AKLCMN.

Прислать комментарий     Решение


Задача 55111

Темы:   [ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC проведены высоты AD и CE. Найдите отношение площадей треугольников ABC и AED, если AB = 6, AC = 5, CB = 7.

Прислать комментарий     Решение


Задача 55119

Темы:   [ Отношение площадей подобных треугольников ]
[ Угол между касательной и хордой ]
Сложность: 3+
Классы: 8,9

AB — диаметр; BC и AC — хорды, причем $ \cup$ BC = 60o; D — точка пересечения продолжения диаметра AB и касательной CD. Найдите отношение площадей треугольников DCB и DCA.

Прислать комментарий     Решение


Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 462]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .