ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Внутри треугольника ABC взята точка M. Докажите, что угол BMC больше угла BAC.

   Решение

Задачи

Страница: << 38 39 40 41 42 43 44 >> [Всего задач: 5266]      



Задача 54998

Темы:   [ Признаки подобия ]
[ Отношение площадей подобных треугольников ]
Сложность: 3
Классы: 8,9

Основание треугольника равно 36. Прямая, параллельная основанию, делит площадь треугольника пополам.
Найдите длину отрезка этой прямой, заключённого между сторонами треугольника.

Прислать комментарий     Решение

Задача 55090

Темы:   [ Свойства медиан. Центр тяжести треугольника. ]
[ Отношение площадей треугольников с общим углом ]
Сложность: 3
Классы: 8,9

Дан треугольник ABC площади 1. На медианах AK, BL и CN взяты точки P, Q и R так, что  AP = PK,  BQ : QL = 1 : 2,  CR : RN = 5 : 4.  Найдите площадь треугольника PQR.

Прислать комментарий     Решение

Задача 55170

Тема:   [ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3
Классы: 8,9

Внутри треугольника ABC взята точка M. Докажите, что угол BMC больше угла BAC.

Прислать комментарий     Решение

Задача 55346

Темы:   [ Теорема косинусов ]
[ Ромбы. Признаки и свойства ]
[ Применение тригонометрических формул (геометрия) ]
Сложность: 3
Классы: 8,9

В ромбе ABCD угол при вершине A равен 60°. Точка N делит сторону AB в отношении  AN : BN = 2 : 1.  Найдите тангенс угла DNC.

Прислать комментарий     Решение

Задача 55463

Темы:   [ Ортоцентр и ортотреугольник ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Свойства симметрий и осей симметрии ]
Сложность: 3
Классы: 8,9

Докажите, что точки, симметричные точке пересечения высот (ортоцентру) треугольника ABC относительно прямых, содержащих его стороны, лежат на описанной окружности этого треугольника.

Прислать комментарий     Решение

Страница: << 38 39 40 41 42 43 44 >> [Всего задач: 5266]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .