Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

а) Докажите, что нельзя занумеровать рёбра куба числами 1, 2, ..., 11, 12 так, чтобы для каждой вершины сумма номеров трёх выходящих из неё рёбер была одной и той же.

б) Можно ли вычеркнуть одно из чисел 1, 2, ..., 12, 13 и оставшимися занумеровать рёбра куба так, чтобы выполнялось то же условие?

Вниз   Решение


В треугольнике ABC  ∠A = 60°,  точки M и N на сторонах AB и AC соответственно таковы, что центр описанной окружности треугольника ABC делит отрезок MN пополам. Найдите отношение  AN : MB.

ВверхВниз   Решение


Две окружности радиусов 1 и пересекаются в точке A. Расстояние между центрами окружностей равно 2. Хорда AC большей окружности пересекает меньшую окружность в точке B и делится этой точкой пополам. Найдите эту хорду.

ВверхВниз   Решение


На рыбалке. Четыре друга пришли с рыбалки. Каждые двое сосчитали суммы своих уловов. Получилось шесть чисел: 7, 9, 14, 14, 19, 21. Сможете ли Вы узнать, каковы были уловы?

ВверхВниз   Решение


Две окружности пересекаются в точках A и B. Хорда CD первой окружности имеет с хордой EF второй окружности общую точку M. Известно, что  BM = 2,  AB = 3CM = 9EM,  MD = 2CM,  MF = 6CM.  Какие значения может принимать длина отрезка AM?

ВверхВниз   Решение


Из центра O окружности опущен перпендикуляр OA на прямую l. На прямой l взяты точки B и C так, что AB = AC. Через точки B и C проведены две секущие, первая из которых пересекает окружность в точках P и Q, а вторая — в точках M и N. Прямые PM и QN пересекают прямую l в точках R и S. Докажите, что AR = AS.

ВверхВниз   Решение


Два квадрата BCDA и BKMN имеют общую вершину B. Докажите, что медиана BE треугольника ABK и высота BF треугольника CBN лежат на одной прямой. (Вершины обоих квадратов перечислены по часовой стрелке.)

ВверхВниз   Решение


На продолжении стороны AC треугольника ABC отложен отрезок  CD = CB.  Докажите, что если  AC > BC,  то угол ABD – тупой.

Вверх   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 122]      



Задача 54034

Темы:   [ Против большей стороны лежит больший угол ]
[ Отношение, в котором биссектриса делит сторону ]
Сложность: 4
Классы: 8,9

BD — биссектриса треугольника ABC, причём AD > CD. Докажите, что AB > BC.

Прислать комментарий     Решение


Задача 54842

Темы:   [ Против большей стороны лежит больший угол ]
[ Отношение, в котором биссектриса делит сторону ]
[ Теорема косинусов ]
[ Теорема синусов ]
Сложность: 4
Классы: 8,9

Из вершины L ромба KLMN проведена прямая, пересекающая прямую KN в точке P. Диагональ KM делит в точке Q отрезок LP так, что LQ : QP = 9 : 10. Найдите синус угла LKN, если треугольник KLP тупоугольный, а $ \angle$PLM = 60o.

Прислать комментарий     Решение


Задача 55174

Темы:   [ Против большей стороны лежит больший угол ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 4
Классы: 8,9

На продолжении стороны AC треугольника ABC отложен отрезок  CD = CB.  Докажите, что если  AC > BC,  то угол ABD – тупой.

Прислать комментарий     Решение

Задача 55192

Темы:   [ Против большей стороны лежит больший угол ]
[ Неравенство треугольника ]
Сложность: 4
Классы: 8,9

Докажите, что если в выпуклом четырёхугольнике ABCD имеет место неравенство AB $ \geqslant$ AC, то BD > DC.

Прислать комментарий     Решение


Задача 55200

Темы:   [ Против большей стороны лежит больший угол ]
[ Неравенства с углами ]
Сложность: 4
Классы: 8,9

В четырёхугольнике ABCD углы A и B равны, а $ \angle$D > $ \angle$C. Докажите, что AD < BC.

Прислать комментарий     Решение


Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 122]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .