ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Окружности S1 и S2 пересекаются в точках A и P. Через точку A проведена касательная AB к окружности S1, а через точку P — прямая CD, параллельная прямой AB (точки B и C лежат на S2, точка D — на S1). Докажите, что ABCD — параллелограмм. Решение |
Страница: << 42 43 44 45 46 47 48 >> [Всего задач: 1275]
Через точку C проведены две прямые, касающиеся заданной окружности в точках A и B. На большей из дуг AB взята точка D, для которой CD = 2 и sin∠ACD·sin∠BCD = 1/3. Найдите расстояние от точки D до хорды AB.
Окружности S1 и S2 пересекаются в точках A и P. Через точку A проведена касательная AB к окружности S1, а через точку P — прямая CD, параллельная прямой AB (точки B и C лежат на S2, точка D — на S1). Докажите, что ABCD — параллелограмм.
Две окружности пересекаются в точках K и L. Их центры расположены по одну сторону от прямой, содержащей отрезок KL. Точки A и B лежат на разных окружностях. Прямая, содержащая отрезок AK, касается одной окружности в точке K. Прямая, содержащая отрезок BK, касается другой окружности также в точке K. Известно, что AL = 3, BL = 6, а tg∠AKB = – ½. Найдите площадь треугольника AKB.
Две окружности пересекаются в точках A и B. Их центры расположены по разные стороны от прямой, содержащей отрезок AB. Точки K и N лежат на разных окружностях. Прямая, содержащая отрезок AK, касается одной окружности в точке A. Прямая, содержащая отрезок AN, касается другой окружности также в точке A. Известно, что Найдите площадь треугольника KBN.
Две окружности пересекаются в точках K и C. Их центры расположены по одну сторону от прямой, содержащей отрезок KC. Точки A и B лежат на разных окружностях. Прямая, содержащая отрезок AK, касается одной окружности в точке K. Прямая, содержащая отрезок BK, касается другой окружности также в точке K. Известно, что AK = 2, BK = , а tg∠AKB = – . Найдите площадь треугольника ABC.
Страница: << 42 43 44 45 46 47 48 >> [Всего задач: 1275] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|