ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Дан куб. Три плоскости, параллельные граням, разделили его на 8 параллелепипедов. Их покрасили в шахматном порядке. Объёмы чёрных параллелепипедов оказались равны 1, 6, 8, 12. Пусть a, b, c, d — комплексные числа, причем углы a0b и c0d равны
и противоположно ориентированы. Докажите, что тогда
а) Постройте с помощью одного циркуля отрезок, который в два раза длиннее данного отрезка.
Сфера единичного радиуса касается всех ребер некоторой треугольной призмы. Чему может быть равен объем этой призмы? Ответ округлите до сотых. На высоте BD треугольника ABC взята такая точка E, что ∠AEC = 90°. Точки O1 и O2 – центры описанных окружностей треугольников AEB и CEB; F, L – середины отрезков AC и O1O2. Докажите, что точки L, E, F лежат на одной прямой. Докажите, что отличная от A точка пересечения окружностей, построенных на сторонах AB и AC треугольника ABC как на диаметрах, лежит на прямой BC. Разделите окружность с данным центром на шесть равных частей, пользуясь только циркулем. Пользуясь только циркулем, удвойте данный орезок, то есть постройте для данных точек A и B такую точку C, чтобы точки A, B, C лежали на одной прямой (B между A и C) и AC = 2AB. Постройте с помощью одного циркуля точку, симметричную точке A относительно прямой,
проходящей через данные точки B и C.
Докажите, что во всяком описанном четырёхугольнике середины диагоналей и центр вписанной окружности расположены на одной прямой. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 158]
Докажите, что отличная от A точка пересечения окружностей, построенных на сторонах AB и AC треугольника ABC как на диаметрах, лежит на прямой BC.
На сторонах AB, BC, CD, DA прямоугольника ABCD взяты соответственно точки K, L, M, N, отличные от вершин. Известно, что
KL || MN и
Докажите, что во всяком описанном четырёхугольнике середины диагоналей и центр вписанной окружности расположены на одной прямой.
На высоте BD треугольника ABC взята такая точка E, что ∠AEC = 90°. Точки O1 и O2 – центры описанных окружностей треугольников AEB и CEB; F, L – середины отрезков AC и O1O2. Докажите, что точки L, E, F лежат на одной прямой.
Бильярдный стол имеет вид прямоугольника 2×1, в углах и на серединах больших сторон которого расположены лузы. Какое наименьшее число шаров надо расположить внутри прямоугольника, чтобы каждая луза находилась на одной линии с некоторыми двумя шарами?
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 158]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке