ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Даны две точки A и B и окружность S . С помощью циркуля и линейки постройте окружность, проходящую через точки A и B и касающуюся окружности S .

   Решение

Задачи

Страница: << 54 55 56 57 58 59 60 >> [Всего задач: 329]      



Задача 54640

Темы:   [ ГМТ - окружность или дуга окружности ]
[ Касающиеся окружности ]
[ Отрезок, видимый из двух точек под одним углом ]
Сложность: 4+
Классы: 8,9

На окружности заданы две точки A и B. Проводятся всевозможные пары окружностей, касающихся внешним образом друг друга и касающихся внешним образом данной окружности в точках A и B. Какое множество образуют точки взаимного касания этих пар окружностей?

Прислать комментарий     Решение


Задача 58341

Темы:   [ Инверсия помогает решить задачу ]
[ Касающиеся окружности ]
[ Окружность, вписанная в угол ]
Сложность: 5-
Классы: 9,10,11

Найдите множество точек касания пар окружностей, касающихся сторон данного угла в данных точках A и B.
Прислать комментарий     Решение


Задача 65375

Темы:   [ Вписанные и описанные окружности ]
[ Касающиеся окружности ]
[ Прямая Эйлера и окружность девяти точек ]
Сложность: 5-
Классы: 9,10,11

В треугольнике ABC серединный перпендикуляр к BC пересекает прямые AB и AC в точках AB и AC соответственно. Обозначим через Oa центр описанной окружности треугольника AABAC. Аналогично определим Ob и Oc. Докажите, что описанная окружность треугольника OaObOc касается описанной окружности исходного треугольника.

Прислать комментарий     Решение

Задача 65802

Темы:   [ Вписанные и описанные окружности ]
[ Касающиеся окружности ]
[ Три прямые, пересекающиеся в одной точке ]
[ Осевая и скользящая симметрии (прочее) ]
[ Гомотетия помогает решить задачу ]
[ Изогональное сопряжение ]
Сложность: 5-
Классы: 9,10,11

Дан треугольник ABC. Рассмотрим три окружности, первая из которых касается описанной окружности Ω в вершине A, а вписанной окружности ω внешним образом в какой-то точке A1. Аналогично определяются точки B1 и C1.
  а) Докажите, что прямые AA1, BB1 и CC1 пересекаются в одной точке.
  б) Пусть A2 – точка касания ω со стороной BC. Докажите, что прямые AA1 и AA2 симметричны относительно биссектрисы угла A.

Прислать комментарий     Решение

Задача 55455

Темы:   [ Окружности (построения) ]
[ Касающиеся окружности ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Инверсия помогает решить задачу ]
[ Построение окружностей ]
Сложность: 5
Классы: 8,9

Даны две точки A и B и окружность S . С помощью циркуля и линейки постройте окружность, проходящую через точки A и B и касающуюся окружности S .
Прислать комментарий     Решение


Страница: << 54 55 56 57 58 59 60 >> [Всего задач: 329]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .