ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Преобразования плоскости
>>
Движения
>>
Осевая и скользящая симметрии
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Внутри острого угла даны точки M и N. Как из точки M направить луч света, чтобы он, отразившись последовательно от сторон угла, попал в точку N? Решение |
Страница: << 50 51 52 53 54 55 56 >> [Всего задач: 563]
В треугольнике ABC провели биссектрису CL. Точки A1 и B1 симметричны точкам A и B относительно прямой CL, A2 и B2 симметричны точкам A и B относительно точки L. Пусть O1 и O2 – центры описанных окружностей треугольников AB1B2 и BA1A2. Докажите, что углы O1CA и O2CB равны.
В треугольнике ABC AB – BC = . Пусть M – середина стороны AC, а BN – биссектриса. Докажите, что ∠BMC + ∠BNC = 90°.
Квадратный лист бумаги согнули по прямой так, что одна из вершин квадрата оказалась на несмежной стороне. При этом образовалось три треугольника. В эти треугольники вписали окружности (см. рис.). Докажите, что радиус одной из этих окружностей равен сумме радиусов двух других.
Даны три квадратных трёхчлена P(x), Q(x) и R(x) с положительными старшими коэффициентами, имеющие по два различных корня. Оказалось, что при подстановке корней трёхчлена R(x) в многочлен P(x) + Q(x) получаются равные значения. Аналогично при подстановке корней трёхчлена P(x) в многочлен Q(x) + R(x) получаются равные значения, а также при подстановке корней трёхчлена Q(x) в многочлен P(x) + R(x) получаются равные значения. Докажите, что три числа: сумма корней трёхчлена P(x), сумма корней трёхчлена Q(x) и сумма корней трёхчлена R(x) равны между собой.
Внутри острого угла даны точки M и N. Как из точки M направить луч света, чтобы он, отразившись последовательно от сторон угла, попал в точку N?
Страница: << 50 51 52 53 54 55 56 >> [Всего задач: 563] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|