Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 14 задач
Версия для печати
Убрать все задачи

Докажите, что квадратные корни из комплексного числа  z = a + ib  находятся среди чисел

w = ± ± i .
Как нужно выбрать знак перед вторым слагаемым в скобке, чтобы получить два нужных корня, а не сопряженные к ним числа?

Вниз   Решение


С помощью одной двусторонней линейки восставьте перпендикуляр к данной прямой l в данной точке A.

ВверхВниз   Решение


Тетраэдр называется ортоцентрическим, если его высоты (или их продолжения) пересекаются в одной точке. Докажите, что тетраэдр ABCD ортоцентрический тогда и только тогда, когда две пары его противоположных рёбер перпендикулярны, т.е. AB CD и AD BC (в этом случае рёбра третьей пары также перпендикулярны, т.е. AC BD ).

ВверхВниз   Решение


Три параллельные прямые касаются в точках A , B и C сферы радиуса 4 с центром в точке O . Найдите угол BAC , если известно, что площадь треугольника OBC равна 4, а площадь треугольника ABC больше 16.

ВверхВниз   Решение


Дан прямоугольный параллелепипед ABCDA1B1C1D1 , в котором AB =2 , AD = 4 , BB1 = 12 . Точки M и K расположены на рёбрах CC1 и AD соответственно, причём CM:MC1 = 1:2 , AK = KD . Найдите угол между прямыми AM и KB1 .

ВверхВниз   Решение


Боковые стороны трапеции равны 7 и 11, а основания — 5 и 15. Прямая, проведённая через вершину меньшего основания параллельно большей боковой стороне, отсекает от трапеции треугольник. Найдите его стороны.

ВверхВниз   Решение


Найдите площадь трапеции, если её диагонали равны 17 и 113, а высота равна 15.

ВверхВниз   Решение


Докажите, что если каждое из двух чисел является суммой квадратов двух целых чисел, то и их произведение является суммой квадратов двух целых чисел.

ВверхВниз   Решение


Чему равна сумма  φ(1) + φ(p) + φ(p2) + ... + φ(pα),  где α #8211; некоторое натуральное число?

ВверхВниз   Решение


Решите уравнение |x-2|+|x-1|+|x|+|x+1|+|x+2|=6.

ВверхВниз   Решение


Сфера с центром в точке O проходит через вершины K , L и M треугольной пирамиды KLMN и пересекает рёбра KN , LN и MN в точках A , B , C соответственно. Известно, что NL = 14 , KN = 16 и MN:KL = 2:3 . Проекциями точки O на плоскости KLN , LMN и KMN являются середины рёбер KL , LM и KM соответственно. Расстояние между серединами рёбер KL и MN равно . Найдите периметр треугольника ABC .

ВверхВниз   Решение


Докажите, что если одна из двух параллельных прямых перпендикулярна некоторой плоскости, то и вторая прямая перпендикулярна этой плоскости.

ВверхВниз   Решение


Докажите, что две прямые, перпендикулярные одной и той же плоскости, параллельны.

ВверхВниз   Решение


Дана линейка постоянной ширины (т.е. с параллельными краями) и без делений. Постройте биссектрису данного угла.

Вверх   Решение

Задачи

Страница: 1 2 3 >> [Всего задач: 11]      



Задача 57278

Тема:   [ Построения с помощью двусторонней линейки ]
Сложность: 3
Классы: 8,9

Выполните построения с помощью линейки с двумя параллельными краями (двусторонней линейки) без циркуля.
а) Постройте биссектрису данного угла AOB.
б) Дан острый угол AOB. Постройте угол BOC, биссектрисой которого является луч OA.
Прислать комментарий     Решение


Задача 57279

Тема:   [ Построения с помощью двусторонней линейки ]
Сложность: 3
Классы: 8,9

С помощью одной двусторонней линейки восставьте перпендикуляр к данной прямой l в данной точке A.
Прислать комментарий     Решение


Задача 57280

Тема:   [ Построения с помощью двусторонней линейки ]
Сложность: 3
Классы: 8,9

С помощью одной двусторонней линейки:
а) через данную точку проведите прямую, параллельную данной прямой;
б) постройте середину данного отрезка.
Прислать комментарий     Решение


Задача 55580

Темы:   [ Построения с помощью двусторонней линейки ]
[ Биссектриса угла (ГМТ) ]
Сложность: 3+
Классы: 8,9

Дана линейка постоянной ширины (т.е. с параллельными краями) и без делений. Постройте биссектрису данного угла.

Прислать комментарий     Решение


Задача 55581

Темы:   [ Построения с помощью двусторонней линейки ]
[ Признаки и свойства параллелограмма ]
Сложность: 3+
Классы: 8,9

Разделите данный отрезок пополам с помощью линейки с параллельными краями и без делений.

Прислать комментарий     Решение


Страница: 1 2 3 >> [Всего задач: 11]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .