ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи а) Точки A1 и B1 делят стороны BC и AC треугольника ABC в отношениях BA1 : A1C = 1 : p и AB1 : B1C = 1 : q. В каком отношении отрезок AA1 делится отрезком BB1? б) На сторонах BC и AC треугольника ABC взяты точки A1 и B1. Отрезки AA1 и BB1 пересекаются в точке D. Пусть a1, b1, c и d – расстояния от точек A1, B1, C и D до прямой AB. Докажите, что 1/a1 + 1/b1 = 1/c + 1/d. Решение |
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 200]
Дан треугольник ABC. На сторонах AB и BC взяты точки M и N соответственно, причём AB = 5AM, BC = 3BN. Отрезки AN и CM пересекаются
В треугольнике ABC на стороне AB взята точка K, причём AK : BK = 1 : 2, а на стороне BC взята точка L, причём CL : BL = 2 : 1. Q – точка пересечения прямых AL и CK. Найдите площадь треугольника ABC, если известно, что SBQC = 1.
Пусть E, F, G – такие точки на сторонах соответственно AB, BC, CA треугольника ABC, для которых AE : EB = BF : FC = CG : GA = k : 1, где 0 < k < 1. Найдите отношение площади треугольника, образованного прямыми AF, BG и CE, к площади треугольника ABC.
б) На сторонах BC и AC треугольника ABC взяты точки A1 и B1. Отрезки AA1 и BB1 пересекаются в точке D. Пусть a1, b1, c и d – расстояния от точек A1, B1, C и D до прямой AB. Докажите, что 1/a1 + 1/b1 = 1/c + 1/d.
Через произвольную точку P стороны AC треугольника ABC параллельно его медианам AK и CL проведены прямые, пересекающие стороны BC и AB в точках E и F соответственно. Докажите, что медианы AK и CL делят отрезок EF на три равные части.
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 200] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|