ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Прямая, соединяющая точку P пересечения диагоналей четырёхугольника ABCD с точкой Q пересечения прямых AB и CD, делит сторону AD пополам.
Докажите, что она делит пополам и сторону BC.

   Решение

Задачи

Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 330]      



Задача 54895

Темы:   [ Вписанные и описанные окружности ]
[ Средняя линия треугольника ]
[ Вспомогательные подобные треугольники ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC точка O – центр описанной окружности, точка L – середина стороны AB. Описанная окружность треугольника ALO пересекает прямую AC в точке K. Найдите площадь треугольника ABC, если  ∠LOA = 45°,  LK = 8,  AK = 7.

Прислать комментарий     Решение

Задача 56460

Темы:   [ Замечательное свойство трапеции ]
[ Средняя линия треугольника ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 3+
Классы: 8,9

Прямая, соединяющая точку P пересечения диагоналей четырёхугольника ABCD с точкой Q пересечения прямых AB и CD, делит сторону AD пополам.
Докажите, что она делит пополам и сторону BC.

Прислать комментарий     Решение

Задача 64588

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Средняя линия треугольника ]
[ Вписанные и описанные окружности ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Отрезок, видимый из двух точек под одним углом ]
Сложность: 3+
Классы: 9,10,11

Диагонали вписанного четырёхугольника ABCD пересекаются в точке P. Пусть K, L, M, N – середины соответственно сторон AB, BC, CD, AD.
Докажите, что радиусы описанных окружностей треугольников PKL, PLM, PMN и PNK равны.

Прислать комментарий     Решение

Задача 64721

Темы:   [ Вписанные и описанные окружности ]
[ Средняя линия треугольника ]
[ Вписанные четырехугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Угол между касательной и хордой ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 3+
Классы: 9,10,11

Дан треугольник ABC. Обозначим через M середину стороны AC, а через P – середину отрезка CM. Описанная окружность треугольника ABP пересекает сторону BC во внутренней точке Q. Докажите, что  ∠ABM = ∠MQP.

Прислать комментарий     Решение

Задача 64895

Темы:   [ Вписанные и описанные окружности ]
[ Средняя линия треугольника ]
[ Гомотетия помогает решить задачу ]
[ Прямая Эйлера и окружность девяти точек ]
Сложность: 3+
Классы: 8,9,10,11

Точки D, Е и F – середины сторон ВС, АС и АВ треугольника АВС соответственно. Через центры вписанных окружностей треугольников AEF, BDF и СDE проведена окружность. Докажите, что её радиус равен радиусу описанной окружности треугольника DEF.

Прислать комментарий     Решение

Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 330]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .