ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На неравных сторонах AB и AC треугольника ABC внешним образом построены равнобедренные треугольники AC1B и AB1C с углом φ при вершине. а) M – точка медианы AA1 (или её продолжения), равноудаленная от точек B1 и C1. Докажите, что ∠B1MC1 = φ. б) O – точка серединного перпендикуляра к отрезку BC, равноудаленная от точек B1 и C1. Докажите, что ∠B1OC1 = 180° – φ. Решение |
Страница: << 92 93 94 95 96 97 98 >> [Всего задач: 829]
Пусть ABC – правильный треугольник. На его стороне AC выбрана точка T, а на дугах AB и BC его описанной окружности выбраны точки M и N соответственно так, что MT || BC и NT || AB. Отрезки AN и MT пересекаются в точке X, а отрезки CM и NT – в точке Y. Докажите, что периметры многоугольников AXYC и XMBNY равны.
Докажите, что три прямые, симметричные относительно сторон треугольника прямой, проходящей через точку пересечения высот треугольника, пересекаются в одной точке.
На сторонах AB, BC и CA треугольника ABC построены во внешнюю сторону квадраты ABB1A2, BCC1B2 и CAA1C2.
а) M – точка медианы AA1 (или её продолжения), равноудаленная от точек B1 и C1. Докажите, что ∠B1MC1 = φ. б) O – точка серединного перпендикуляра к отрезку BC, равноудаленная от точек B1 и C1. Докажите, что ∠B1OC1 = 180° – φ.
Страница: << 92 93 94 95 96 97 98 >> [Всего задач: 829] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|