ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В остроугольном треугольнике ABC проведены высоты AA1, BB1 и CC1. Докажите, что если  A1B1 || AB  и  B1C1 || BC,  то  A1C1 || AC.

   Решение

Задачи

Страница: << 49 50 51 52 53 54 55 >> [Всего задач: 829]      



Задача 56514

Темы:   [ Треугольник, образованный основаниями двух высот и вершиной ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 3
Классы: 8,9

В остроугольном треугольнике ABC проведены высоты AA1, BB1 и CC1. Докажите, что если  A1B1 || AB  и  B1C1 || BC,  то  A1C1 || AC.

Прислать комментарий     Решение

Задача 56528

Темы:   [ Подобные треугольники (прочее) ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки и свойства параллелограмма ]
Сложность: 3
Классы: 8,9

На прямой l даны точки A, B, C и D. Через точки A и B, а также через точки C и D проводятся параллельные прямые.
Докажите, что диагонали полученных таким образом параллелограммов (или их продолжения) пересекают прямую l в двух фиксированных точках.

Прислать комментарий     Решение

Задача 56530

Темы:   [ Признаки и свойства параллелограмма ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
Сложность: 3
Классы: 8,9

На сторонах AD и CD параллелограмма ABCD взяты точки M и N так, что  MN || AC.  Докажите, что  SABM = SCBN.

Прислать комментарий     Решение

Задача 56531

Темы:   [ Признаки и свойства параллелограмма ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 3
Классы: 8,9

На диагонали AC параллелограмма ABCD взяты точки P и Q так, что  AP = CQ.  Точка M такова, что  PM || AD  и  QM || AB.
Докажите, что точка M лежит на диагонали BD.

Прислать комментарий     Решение

Задача 64938

Темы:   [ Системы точек и отрезков. Примеры и контрпримеры ]
[ Ломаные ]
[ Геометрия на клетчатой бумаге ]
Сложность: 3
Классы: 6,7

Соедините точки А и В (см. рисунок) ломаной из четырёх отрезков одинаковой длины так, чтобы выполнялись следующие условия:
  1) концами отрезков могут быть только какие-то из отмеченных точек;
  2) внутри отрезков не должно быть отмеченных точек;
  3) соседние отрезки не должны лежать на одной прямой.

Прислать комментарий     Решение

Страница: << 49 50 51 52 53 54 55 >> [Всего задач: 829]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .