ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

В равнобедренном треугольнике ABC из середины H основания BC опущен перпендикуляр HE на боковую сторону AC; O — середина отрезка HE. Докажите, что прямые AO и BE перпендикулярны.

   Решение

Задачи

Страница: << 68 69 70 71 72 73 74 >> [Всего задач: 9702]      



Задача 56518

Тема:   [ Подобные фигуры ]
Сложность: 3
Классы: 9

В равнобедренном треугольнике ABC из середины H основания BC опущен перпендикуляр HE на боковую сторону AC; O — середина отрезка HE. Докажите, что прямые AO и BE перпендикулярны.
Прислать комментарий     Решение


Задача 56533

Тема:   [ Подобные треугольники (прочее) ]
Сложность: 3
Классы: 8,9

Три прямые, параллельные сторонам данного треугольника, отсекают от него три треугольника, причём остается равносторонний шестиугольник.
Найдите длину стороны шестиугольника, если длины сторон треугольника равны a, b и c.

Прислать комментарий     Решение

Задача 56534

Тема:   [ Подобные треугольники (прочее) ]
Сложность: 3
Классы: 8,9

Три прямые, параллельные сторонам треугольника, пересекаются в одной точке, причем стороны треугольника высекают на этих прямых отрезки длиной x. Найдите x, если длины сторон треугольника равны a, b и c.

Прислать комментарий     Решение

Задача 56544

Тема:   [ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3
Классы: 7,8

а) Продолжение биссектрисы угла B треугольника ABC пересекает описанную окружность в точке M; O — центр вписанной окружности, Ob — центр вневписанной окружности, касающейся стороны AC. Докажите, что точки A, C, O и Ob лежат на окружности с центром M.
б) Точка O, лежащая внутри треугольника ABC, обладает тем свойством, что прямые AO, BO и CO проходят через центры описанных окружностей треугольников BCO, ACO и ABO. Докажите, что O — центр вписанной окружности треугольника ABC.
Прислать комментарий     Решение


Задача 56545

Тема:   [ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3
Классы: 7,8

Прямоугольный треугольник ABC с прямым углом A движется так, что его вершины B и C скользят по сторонам данного прямого угла. Докажите, что множеством точек A является отрезок и найдите его длину.
Прислать комментарий     Решение


Страница: << 68 69 70 71 72 73 74 >> [Всего задач: 9702]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .