Страница:
<< 68 69 70 71
72 73 74 >> [Всего задач: 9702]
В равнобедренном треугольнике
ABC из середины
H основания
BC
опущен перпендикуляр
HE на боковую сторону
AC;
O — середина
отрезка
HE. Докажите, что прямые
AO и
BE перпендикулярны.
Три прямые, параллельные сторонам данного треугольника, отсекают от него три треугольника, причём остается равносторонний шестиугольник.
Найдите длину стороны шестиугольника, если длины сторон треугольника равны a, b и c.
Три прямые, параллельные сторонам треугольника, пересекаются в одной точке, причем стороны треугольника высекают на этих прямых отрезки длиной x. Найдите x, если длины сторон треугольника равны a, b и c.
а) Продолжение биссектрисы угла
B треугольника
ABC
пересекает описанную окружность в точке
M;
O — центр
вписанной окружности,
Ob — центр вневписанной окружности,
касающейся стороны
AC. Докажите, что точки
A,
C,
O и
Ob
лежат на окружности с центром
M.
б) Точка
O, лежащая внутри треугольника
ABC, обладает
тем свойством, что прямые
AO,
BO и
CO проходят через
центры описанных окружностей треугольников
BCO,
ACO
и
ABO. Докажите, что
O — центр вписанной окружности
треугольника
ABC.
Прямоугольный треугольник
ABC с прямым углом
A движется так, что его
вершины
B и
C скользят по сторонам данного прямого угла. Докажите, что
множеством точек
A является отрезок и найдите его длину.
Страница:
<< 68 69 70 71
72 73 74 >> [Всего задач: 9702]