ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Биссектриса внешнего угла при вершине C треугольника ABC
пересекает описанную окружность в точке D. Докажите, что AD = BD.
Две окружности пересекаются в точках A и B. Точка X
лежит на прямой AB, но не на отрезке AB. Докажите,
что длины всех касательных, проведенных из точки X к окружностям,
равны.
|
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 12671]
Биссектриса внешнего угла при вершине C треугольника ABC
пересекает описанную окружность в точке D. Докажите, что AD = BD.
Докажите, что из точки A, лежащей вне окружности,
можно провести ровно две касательные к окружности, причем
длины этих касательных (т. е. расстояния от A до точек
касания) равны.
Две окружности пересекаются в точках A и B. Точка X
лежит на прямой AB, но не на отрезке AB. Докажите,
что длины всех касательных, проведенных из точки X к окружностям,
равны.
Пусть a и b — длины катетов прямоугольного
треугольника, c — длина его гипотенузы. Докажите, что:
Докажите, что площадь выпуклого четырехугольника равна 12d1d2sinφ, где d1 и d2 — длины диагоналей, а φ — угол между ними.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 12671]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке