ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи На гипотенузе AB прямоугольного треугольника ABC внешним образом построен квадрат ABPQ. Пусть = ACQ, = QCP и = PCB. Докажите, что cos = coscos. Решение |
Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 112]
Внутри равнобедренного прямоугольного треугольника ABC с гипотенузой AB взята такая точка M, что угол MAB на 15° больше угла MAC, а угол MCB на 15° больше угла MBC. Найдите угол BMC.
Дан прямоугольный треугольник с гипотенузой AC, проведена биссектриса треугольника BD; отмечены середины E и F дуг BD окружностей, описанных около треугольников ADB и CDB соответственно (сами окружности не проведены). Постройте одной линейкой центры окружностей.
Даны прямоугольный треугольник ABC и две взаимно перпендикулярные прямые x и y, проходящие через вершину прямого угла A. Для точки X, движущейся по прямой x, определим yb как образ прямой y при симметрии относительно XB, а yc – как образ прямой y при симметрии относительно XC. Пусть yb и yс пересекаются в точке Y. Найдите геометрическое место точек Y (для несовпадающих yb и yс).
В треугольнике ABC стороны AC и BC не равны. Докажите, что биссектриса угла C делит пополам угол между медианой и высотой, проведёнными из вершины C, тогда и только тогда, когда C = 90o.
Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 112] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|