ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 112]      



Задача 110782

Темы:   [ Свойства разверток ]
[ Прямоугольные треугольники (прочее) ]
[ Неравенства с трехгранными углами ]
[ Частные случаи тетраэдров (прочее) ]
Сложность: 4
Классы: 9,10,11

Может ли развертка тетраэдра оказаться треугольником со сторонами 3, 4 и 5 (тетраэдр можно резать только по ребрам)?
Прислать комментарий     Решение


Задача 116057

Темы:   [ Равные треугольники. Признаки равенства (прочее) ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Прямоугольные треугольники (прочее) ]
Сложность: 2+
Классы: 7,8

Прямоугольный лист бумаги согнули, совместив вершину с серединой противоположной короткой стороны (см. рис.). Оказалось, что треугольники I и II равны. Найдите длинную сторону прямоугольника, если короткая равна 8.

Прислать комментарий     Решение

Задача 53386

Темы:   [ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Прямоугольные треугольники (прочее) ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3-
Классы: 8,9

Из середины гипотенузы восставлен перпендикуляр до пересечения с катетом, и полученная точка соединена с концом другого катета отрезком, который делит угол треугольника в отношении  2 : 5  (меньшая часть – при гипотенузе). Найдите этот угол.

Прислать комментарий     Решение

Задача 108734

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Измерение длин отрезков и мер углов. Смежные углы. ]
[ Прямоугольные треугольники (прочее) ]
Сложность: 3-
Классы: 6,7,8,9

Есть три треугольника: остроугольный, прямоугольный и тупоугольный. Саша взял себе один треугольник, а Боря – два оставшихся. Оказалось, что Боря может приложить (без наложения) один из своих треугольников к другому, и получить треугольник, равный Сашиному. Какой из этих треугольников взял Саша?

Прислать комментарий     Решение

Задача 55487

Темы:   [ Две касательные, проведенные из одной точки ]
[ Периметр треугольника ]
[ Прямоугольные треугольники (прочее) ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
Сложность: 3
Классы: 8,9

В прямоугольный треугольник с гипотенузой, равной 26, вписана окружность радиуса 4. Найдите периметр треугольника.

Прислать комментарий     Решение

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 112]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .