ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 112]      



Задача 65429

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Признаки и свойства параллелограмма ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 4-
Классы: 9,10,11

Вписанная окружность прямоугольного треугольника АВС (угол С – прямой) касается сторон АВ, ВС и СА в точках С1, А1, В1 соответственно. Высоты треугольника А1В1С1 пересекаются в точке D. Найдите расстояние между точками C и D, если длины катетов треугольника АВС равны 3 и 4.

Прислать комментарий     Решение

Задача 65456

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Медиана, проведенная к гипотенузе ]
[ Против большей стороны лежит больший угол ]
[ Поворот помогает решить задачу ]
Сложность: 4-
Классы: 8,9

На катетах AC и BC прямоугольного треугольника ABC отметили точки K и L соответственно, а на гипотенузе AB – точку M так, что  AK = BL = a,
KM = LM = b
  и угол KML прямой. Докажите, что  a = b.

Прислать комментарий     Решение

Задача 65459

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Три точки, лежащие на одной прямой ]
[ Вписанный угол равен половине центрального ]
[ Вспомогательные подобные треугольники ]
Сложность: 4-
Классы: 9,10,11

Даны равнобедренный прямоугольный треугольник ABC и прямоугольный треугольник ABD с общей гипотенузой AB (D и C лежат по одну сторону от прямой AB). Пусть DK – биссектриса треугольника ABD. Докажите, что центр описанной окружности треугольника ACK лежит на прямой AD.

Прислать комментарий     Решение

Задача 65644

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Три точки, лежащие на одной прямой ]
[ Медиана, проведенная к гипотенузе ]
[ Вневписанные окружности ]
[ Прямая Симсона ]
Сложность: 4-
Классы: 8,9,10

Пусть M и N – середины гипотенузы AB и катета BC прямоугольного треугольника ABC соответственно. Вневписанная окружность треугольника ACM касается стороны AM в точке Q, а прямой AC – в точке P. Докажите, что точки P, Q и N лежат на одной прямой.

Прислать комментарий     Решение

Задача 66212

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Гомотетия помогает решить задачу ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 4-
Классы: 8,9,10

В прямоугольном треугольнике ABC точка C0 – середина гипотенузы AB, AA1, BB1 – биссектрисы, I – центр вписанной окружности.
Докажите, что прямые C0I и A1B1 пересекаются на высоте CH.

Прислать комментарий     Решение

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 112]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .