ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что проекции вершины A треугольника ABC на биссектрисы внешних и внутренних углов при вершинах B и C лежат на одной прямой.

   Решение

Задачи

Страница: << 47 48 49 50 51 52 53 >> [Всего задач: 330]      



Задача 53349

Темы:   [ Вспомогательные равные треугольники ]
[ Медиана, проведенная к гипотенузе ]
[ Средняя линия треугольника ]
Сложность: 4-
Классы: 8,9

Внутри треугольника ABC взята точка P так, что  ∠PAC = ∠PBC.  Из точки P на стороны BC и CA опущены перпендикуляры PM и PK соответственно. Пусть D – середина стороны AB. Докажите, что  DK = DM.

Прислать комментарий     Решение

Задача 56883

Темы:   [ Три точки, лежащие на одной прямой ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Средняя линия треугольника ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 4-
Классы: 8,9

Докажите, что проекции вершины A треугольника ABC на биссектрисы внешних и внутренних углов при вершинах B и C лежат на одной прямой.

Прислать комментарий     Решение

Задача 64753

Темы:   [ Ортоцентр и ортотреугольник ]
[ Вписанные и описанные окружности ]
[ Средняя линия треугольника ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
Сложность: 4-

Отрезок AD – диаметр описанной окружности остроугольного треугольника ABC. Через точку H пересечения высот этого треугольника провели прямую, параллельную стороне BC, которая пересекает стороны AB и AC в точках E и F соответственно.
Докажите, что периметр треугольника DEF в два раза больше стороны BC.

Прислать комментарий     Решение

Задача 64958

Темы:   [ Ортоцентр и ортотреугольник ]
[ Вспомогательные подобные треугольники ]
[ Средняя линия треугольника ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Признаки и свойства параллелограмма ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4-
Классы: 9,10,11

В треугольнике АВС точки М и N – середины сторон AC и ВС соответственно. Известно, что точка пересечения медиан треугольника AMN является точкой пересечения высот треугольника АВС. Найдите угол АВС.

Прислать комментарий     Решение

Задача 65091

Темы:   [ Признаки и свойства параллелограмма ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Средняя линия треугольника ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Отношение, в котором биссектриса делит сторону ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 4-
Классы: 8,9

В треугольнике ABC точки М и N – середины сторон АС и АВ соответственно. На медиане ВМ выбрана точка Р, не лежащая на CN. Оказалось, что
PC = 2PN.  Докажите, что  АР = ВС.

Прислать комментарий     Решение

Страница: << 47 48 49 50 51 52 53 >> [Всего задач: 330]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .