ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Решите уравнение $ {\frac{x^3}{\sqrt{4-x^2}}}$ + x2 - 4 = 0.

Вниз   Решение


Диагонали прямоугольника $ABCD$ пересекаются в точке $E$. Окружность с центром в точке $E$ лежит внутри прямоугольника. Из вершин $C$, $D$, $A$ проведены касательные к окружности $CF$, $DG$, $AH$, причем $CF$ пересекает $DG$ в точке $I$, $EI$ пересекает $AD$ в точке $J$, а прямые $AH$ и $CF$ пересекаются в точке $L$. Докажите, что отрезок $LJ$ перпендикулярен $AD$.

ВверхВниз   Решение


Дана окружность и точка P внутри нее, отличная от центра. Рассматриваются пары окружностей, касающиеся данной изнутри и друг друга в точке P . Найдите геометрическое место точек пересечения общих внешних касательных к этим окружностям.

ВверхВниз   Решение


В правильном 25-угольнике проведены все диагонали. Докажите, что нет девяти диагоналей, проходящих через одну внутреннюю точку 25-угольника.

ВверхВниз   Решение


Сто натуральных чисел образуют возрастающую арифметическую прогрессию. Возможно ли, что каждые два из этих чисел взаимно просты?

ВверхВниз   Решение


Расстояния от центра описанной окружности остроугольного треугольника до его сторон равны da, db и dc. Докажите, что  da + db + dc = R + r.

Вверх   Решение

Задачи

Страница: << 36 37 38 39 40 41 42 >> [Всего задач: 501]      



Задача 57028

Тема:   [ Вписанные четырехугольники (прочее) ]
Сложность: 5
Классы: 8,9

Докажите, что если диагонали четырехугольника перпендикулярны, то проекции точки пересечения диагоналей на стороны являются вершинами вписанного четырехугольника.
Прислать комментарий     Решение


Задача 57046

Тема:   [ Теорема Птолемея ]
Сложность: 5
Классы: 9

Четырехугольник ABCD вписанный. Докажите, что

$\displaystyle {\frac{AC}{BD}}$ = $\displaystyle {\frac{AB\cdot AD+CB\cdot CD}{BA\cdot BC+DA\cdot DC}}$.


Прислать комментарий     Решение

Задача 57048

Темы:   [ Теорема Птолемея ]
[ Вписанные и описанные окружности ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
Сложность: 5
Классы: 8,9,10

Расстояния от центра описанной окружности остроугольного треугольника до его сторон равны da, db и dc. Докажите, что  da + db + dc = R + r.
Прислать комментарий     Решение


Задача 57049

Тема:   [ Теорема Птолемея ]
Сложность: 5
Классы: 9

Вписанная окружность касается сторон BC, CA и AB в точках A1, B1 и C1. Пусть Q — середина отрезка A1B1. Докажите, что $ \angle$B1C1C = $ \angle$QC1A1.
Прислать комментарий     Решение


Задача 57050

Темы:   [ Теорема Птолемея ]
[ Неравенства с биссектрисами ]
Сложность: 5
Классы: 8,9,10

Биссектриса угла A треугольника ABC пересекает описанную окружность в точке D. Докажите, что  AB + AC $ \leq$ 2AD.
Прислать комментарий     Решение


Страница: << 36 37 38 39 40 41 42 >> [Всего задач: 501]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .